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Abstract

Commercial DBMS offer mechanisms for views and for versions. Research and de-
velopment efforts in these directions are, however, characterized by concentration on
either the one or the other mechanism, very seldom trying to take advantage of their
complementary properties. This paper presents the multiversion view mechanism,
which allows these orthogonal concepts to be managed together, taking advantage of
their combined characteristics. Unlike previous efforts to combine views and versions,
multiversion views create views over versions of data, thereby offering users coherent
logical units of the versioned world. They allow a wide range of (virtual) data reorga-
nization possibilities, which encompass, among others, operations found in temporal
databases and OLAP. Multiversion views are illustrated and motivated by needs from
a real life large case study of complex configuration management, described at the end
of the paper.
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1 Introduction

Database applications need both views and versions to meet distinct requirements. The
main difference between versions and views is that versions are permanently stored in the
database, whereas views are virtual. This permanent/virtual status is, in fact, one important
difference, but it is not the only one.

Versions are employed when the user wants to keep track of the evolution of the entities
modeled in the database. This evolution may be just temporal, following a total order (e.g.,
when recording changes in personnel in a given enterprise) or may include several other
criteria, being organized according to some partial order (e.g., in keeping track of design
alternatives in a CAD environment). Nowadays, the use of versions is being extended to
several domains, notably in planning activities, where the user wants to organize alternative
scenarios for decision purposes.

Whereas versions keep track of evolution, views provide a virtual image of the database,

with three main goals [FSS79]:



in the database, hiding unnecessary details;

o restriction for security: the view keeps the user from accessing non-authorized data,
hiding sensitive data; and

o restructuration: the view is the means through which data are restructured according
to the users’ needs, grouping together parts of a database into a virtual work unit,
thereby providing another perspective on stored data.

More recently, views have been advocated as means of introducing structure into unstruc-
tured or semistructured data (e.g., [AGM*97]). In all cases, as far as the user is concerned,
a view 1s a virtual database on its own.

Thus, both views and versions must be supported for different reasons. However, the
standard approach is to deal with each separately, even when data are versioned. Conse-
quently, views are limited to showing one (non-versioned) state. If users want to see how
data are versioned, they are required to generate distinct views (one per version) and to
maintain the relationships among these views. This is obviously a serious limitation: if the
data are versioned, why not provide views that reflect this? The main problem is that,
since views and versions are always maintained separately, and are conceptually kept apart,
combining them presents both design and implementation difficulties. In order to solve this
problem, this paper introduces multiversion views — a view model which is based on extend-
ing a version mechanism which is already available (Cellary and Jomier [CJ90]) with views.
This solution has the following main characteristics:

o [t preserves versioning of data. Views are treated as virtual databases created on top
of the source (base) data. If these base data contain versions, then the views must
reflect this to the users, i.e., they constitute virtual databases with versions.

e It maintains view functionality. Multiversion views serve, as any other view, to restrict
information for ease of use and/or security, and to offer a restructured perspective of
the underlying database.

As a result, two very useful data management facilities are offered. First, multiversion
views allow users to compare and manipulate multiple states (i.e., the versions) of a given
set of database objects, in a single view. The management of inter-relationships between
objects and their versions is left to the underlying version mechanism, thus freeing the
users from this type of concern. Second, they allow users to reorganize objects according
to different versioning criteria, which are not necessarily the same as the original (stored)
versioning criterion. As will be shown during the paper, this permits users to manipulate
data as in an OLAP context (e.g., [Sho97]) when restricted to single database classes, or
reproducing operations in temporal databases (e.g., [Sn095]). Since versions are also common
in a design context (e.g., CAD applications), multiversion views contribute to enrich a design
environment with multiple perspectives of the data, constituting a means for enhancing
cooperative work.

In order to describe multiversion views, we base our work on the database version model
of Cellary and Jomier [CJ90], in an object-oriented context. We have chosen object-oriented
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databases. The database version model of [CJ90] was selected due to the fact that it is based
in a formal description, and that it clearly distinguishes between physical implementation
issues and logical user-related issues. Thus, physical issues are appropriately handled by the
version model adopted.

An informal description of some of the characteristics of multiversion views was given
in [MBJ96], motivated by the problem of managing multiple representations in geographic
applications. Here we extend and formalize these notions, showing how they can be applied
to a more general framework.

The remainder of this paper is organized as follows. Section 2 gives an overview of related
work. The subsequent sections of the paper describe the multiversion view mechanism itself.
Section 3 introduces multiversion views: Section 3.1 gives a brief overview of the multiversion
database model, which is the basis for construction of these views; Sections 3.2 and 3.3
informally present multiversion views, and introduce a short example that is used throughout
the text. Sections 4 and 5 formalize the construction of these views. Section 6 describes
the architecture for implementing multiversion views. Section 7 presents conclusions and
directions for future work. Appendix A describes the real life application from which we
extracted the basic example we use to illustrate multiversion views.

Throughout the paper, we sometimes use “code notation” (e.g., when we define database
classes or specify queries). We stress that we do not follow any specific language syntax, but
rather are providing an intuitive perspective of operations that lie behind multiversion view
construction.

2 Related work

Work on views and on versions has usually progressed independently. Exceptions are our
own preliminary work on the subject [MBJ96], in the context of geographic applications,
the work of Byeon and MclLeod [BM93], which tries to provide an integrated framework
for working with views and versions, and that of Ra and Rundensteiner [RR97], which uses
views to support schema evolution.

Byeon and McLeod’s integrated approach tries to unify the concepts of views and ver-
sions by considering both to be obtainable from a database by a set of schema and instance
transformation operations. These operations are executed in a sequence of < import, trans-
form > steps. Views (and versions) are created by means of schema evolution operations
and instance definitions, where schema operations receive special attention. Since the goal is
to eliminate any distinction between views and versions, this approach has the shortcoming
that the concept of data versioning, which users find useful, is lost. The main differences
between their views and versions are:

e a view can be built from more than one source database; and

e a version can only be built on top of a single database, by importing its entire schema,
and then transforming it.



agree to the restructuring, the view is materialized into a version, and loses all connotation
with views and view mechanisms. Examples are the work of [BFK95], where views serve to
validate schema evolution, and [Nov95], where views are used to build consistent software
configurations from a database of software modules, and then stored as versions of a given
software. A related proposal is that of [IKR97], based on maintaining versions of relational
views, where these versions are created through a view mechanism (constructing views over
views by means of updates). The goal is to support multiple versions of a given data set,
for decision support applications.

Ra and Rundensteiner [RR97], on the other hand, are interested in schema evolution (e.g.,
for CAD applications). They have developed a system which maintains multiple schema
versions for a given database, allowing “old” and “new” users to share the same data,
viewed through distinct schemata. Fach version of a schema is handled through mappings
from previous to next schema, by means of a schema update mechanism. Eventually, older
schema versions may be abandoned.

The remaining literature concentrates either on views or on versions. Byeon and MacLeod
[BM93] provide a useful means of analyzing these papers, from an object-oriented perspec-
tive, pointing out that the creation of views (or of versions) either concentrates on a single
class (i.e., a view schema has just one class, or only a class can be versioned) or on multi-
ple classes. Earlier work concentrates on the first approach, whereas recently authors have
considered the issue of multi-class schemata.

Versions are a means of storing different states of a given entity, thereby allowing the
control of alternatives and of temporal data evolution. Research has appeared mostly in the
context of CASE systems and CAD/CAM projects, often for object-oriented databases (e.g.,
[KSW86, Kat90, KS92, WR94, TOY6]). Versions are also often considered in the context of
concurrency control (e.g., [FD96, LST98]) or as the means to support cooperative work (e.g.,
[DL96]). In several cases, versions of a given data set are created by materializing snapshots
of this set. This is usually not seen as a version mechanism, but just as a means of keeping
track of data through time. Good surveys on different uses for versioning mechanisms appear
in [Kat90] and [Man00].

Views in databases are usually defined as the result of a query. Views may be stored
(materialized), but in general it is understood that versions correspond to stable data,
whereas though views are generated from stable data, they are usually temporary. Fach
proposed view mechanism concentrates on a different issue (e.g., operation translation, data
restructuration capabilities, or data integration properties). The issue of views in relational
databases is understood [F'SS79, BLT86], but is still a matter of research in object-oriented
databases (e.g., [AB91, MM91, Ber92, SAD94, LDB98]), as well as in deductive databases
(e.g., [YPS95]). As remarked in a thorough survey on view mechanisms [MP96], although
queries may be enough to build views in the relational world, this is no longer the case for
object oriented databases, where the schema must be defined apart. The appearance of data
warehouses has provided a new field for work on materialized views (e.g., [Huy98, YKL98]),
restricted to relational queries and their optimization, as well as for creating online aggre-
gations of these data — e.g., for OLAP operations, see [BW99].

In object-oriented databases, the construction of the view schema should be kept apart



defined which cannot be specified by queries. However, none of the proposed mechanisms
separates schema definition from extension definition, and the issues of schema construction
are thus blurred with those of extension specification and oid (object identifier) definition.
One of the first papers to consider views in terms of schema restructuration was [TYIS8§],
who considers view creation in terms of schema definition (by operations on the inheritance
graph), implemented in Smalltalk. Different sets of schema structuration operations were
proposed by [KC88] (in the context of the ORION project), [Run93] (for CAD data integra-
tion and customization), [BFK95] and [LDB97, LDBI8] (formalizing a data model for views
in object oriented database systems) and [FR97] (for constructing object oriented views on
top of relational databases).

Multiversion views, as we show next, differ from all other proposals which try to combine
views and versions by allowing users to “see” multiple consistent versioned states of the world
throughout views. These versioned states can either reflect the way data are organized, but
just showing parts of the database (akin to the “restrict” views of Section 1) or reorganize the
underlying database by schema or versioning changes (akin to the “restructure”). Existing
methods cannot perform the same tasks. First, no other study allows defining a view with
simultaneous access to multiple versions in a database while at the same time ensuring
version consistency. Furthermore, multiversion views also allow changing versioning criteria
virtually, which we call changing version semantics. This, again, is not available elsewhere.

3 The Concept of Views over Multiversion Databases

The previous section briefly considered work on views and versions, showing that most of
this work treats these issues separately. We, on the other hand, propose a mechanism that
encompasses both, but yet allows them to be treated separately. Multiversion views are
views which are built on top of a multiversion database, constructed using the database
version approach of [CJ90].

This section presents these views informally, and the subsequent sections formalize the
definition. The first part of the section gives an outline of the database version approach, and
the second part gives a high level description of the multiversion view definition, introducing
a simplified example which we use throughout the paper. The example is based on a real
life case study described in Appendix A.

3.1 The database version approach

Our paper concerns building views for a database with versions. Several version mechanisms
have been proposed in the literature (e.g., [CK86, Kat90, Bladl, Sci91]). In this section, we
briefly present the database version approach [CJ90, GJ94], which we will use as the version
model and mechanism for our work. The advantages of this approach have been discussed
elsewhere, and do not concern this paper.

Database version A conventional monoversion database (i.e., a database where versions
are not considered) represents one state of a modeled part of the world. In the database
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modeled part of the world. Each state is called a database version. A database version,
denoted d, has an identifier, denoted d;, and contains a version of each object stored in the
database. A database version is defined by the couple <schema, logical extension version>.
A logical extension version reflects one (versioned) state of the modeled world, and roughly
corresponds to the extension of a monoversion database.

A multiversion database contains multiversion objects, i.e., each object therein is com-
posed of several logical object versions. A multiversion object is denoted by mo. A logical
object version is similar to an object in a monoversion database: it has an identifier and a
value. A logical extension version contains a logical object version of each object stored in
the database. Given a multiversion object mo, and a set of database versions {d;,ds...d,},
the identifier of the logical version of mo contained in some database version d is given
by < mo,d; >. More generally, the identifier of a logical version of a multiversion object
contained in a database version is a couple <multiversion object identifier, database version
identifier>, denoting the fact that a given multiversion object may have a different value for
each database version.

Since, formally, all the objects that exist in the multiversion database appear logically at
each database version, a special value 1, meaning does not exist, is used to express object
non-existence in a particular database version.

Physical object versions. Since different database versions usually differ only partially
from one another, logical versions of an object often have identical values. To avoid redun-
dancy, they are mapped to a physical object version, which can be shared by several database
versions.

Derivation operation. Database versions are created by derivation. A derivation op-
eration is addressed to a specific database version, which becomes the derivation’s parent
database version, and it derives a child database version, which, just after the derivation, is
a logical copy of the parent. A database version may have as many children as desired. Once
created, a database version evolves automonously, according to transactions addressed to it.
For optimization reasons, the trace of database version derivation is kept by the database
management system.

Example 1. Figure 1 presents an example of a multiversion database which has three
logical database versions dl,d2,d3, for hardware components. The database contains two
objects each of which has a name (resp., DISK1, DRIVER2) and a price (represented by $$
in the figure). d2 and d3 present alternatives for an overall price reduction, given the initial
scenario in dl. For instance, the price of DISK1 is $3% in dl, and $ in d2 (DRIVER2 was
not affected), or much larger in d3 (DRIVER2 was discarded). The fact that DRIVER2
was discarded is represented in d3 by symbol L. indicating that DRIVERZ2 does not exist
in that specific database version. If mo; and mo,; are the multiversion object identifiers for
respectively DISK1 and DRIVER2, then < mo;, d3 > stands for DISK1’s state at database
version d3 (i.e., a logical version of DISK1). Database versions d2 and d3 are both derived
from the database version d1, as two alternatives. DISK1’s price is different in each database
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DRIVER2 had no changes from dl to d2, and therefore its logical versions share the same
physical version.

() s / osa () s
DRIVER2
DISK1 Q 355

DRIVER2 d2

dl

() sssss
DISK1 L

d3

Figure 1: Example of a multiversion database and its derivation graph

Updating a logical object version. The key operation in the model is the update of
a logical version of an object, i.e., updating the object’s value within a particular database
version. To update a logical object version contained in a database version d, first, the
corresponding physical object version is identified. If it is unshared, it can be simply updated.
If it is shared by several logical object versions, then a new physical object version is created,
in which changes are introduced. As a result, the shallow equality between two objects
becomes, in a multiversion database, the identity between the physical versions of two logical
object versions, assuming that it is never the case that two distinct physical versions of one
object have the same value.

To delete a logical object version, i.e., to delete an object in a particular database version,
it is sufficient to update it with the L value. To create a new multiversion object, first, its
L version is created and implicitly associated with all the database versions. Next, it may
be updated in selected database versions, as required.

Complex object versioning. The database version approach is particularly advanta-
geous in the management of complex objects, i.e., objects referencing other objects, because
it provides orthogonality between composition and versioning. Just as a complex object
points at its components, a version of a complex object contains multiversion object identi-
fiers as references to components.

3.2 Virtual Multiversion Databases

Paraphrasing [AGM™97], for the user, the view is a “stand-alone” database created from the
original database. Consequently, if we start from a multiversion database, then it is natural



We call this original database the source database for view construction, which itself may
contain views — i.e., a view may be built on top of other views. Thus, the key concept of
the view definition presented in this paper is that a view is a virtual multiversion database
constructed from some source multiversion database.

A multiversion view is defined by the tuple

< Virtual intension; Virtual extension >

where both intension and extension are built from the source database. In standard
database theory, the intension of a database corresponds to its schema. Here, we extend
this notion, in order to let it encompass versioning criteria as well, i.e.,

Virtual intension < Definition of the virtual schema ;
Definition of the virtual version semantics >

Virtual extension = set of queries over the source database

Since the view is a multiversion database, it is composed of virtual database versions. We
recall that a database version d is defined by the couple <logical schema, logical extension>>.
Thus, a virtual database version is defined by the couple <wirtual logical schema, virtual
logical extension >.

Having defined these concepts, we now state the basics of multiversion view construction.
Multiversion views are constructed according to two steps:

1. Intension definition (formalized at section 4)

e specification of view schema; and

e specification of version semantics
2. Extension definition, by querying the database (described at section 5).

If neither schema nor version criteria are modified, our views indeed correspond to stan-
dard views (always assuming that standard views allow data versioning, which is not nor-
mally the case). However, if at least one of these is modified, then new issues are raised.

Furthermore, version restructuring to our knowledge is not available by any existing
method, unless the whole database is re-created. Schema restructuring, on the other hand,
is available within certain limits, see section 2.

3.3 Basic intension definition

Traditionally, a database view may either just reflect part of an underlying database —
i.e., by selecting the entire underlying schema, or part of it, and choosing some instances
(“restriction” view) — or, alternatively, restructure the database (“restructure” view) — i.e.,
by restructuring the schema and then creating the instances.

A view on a multiversion database is itself a (virtual) multiversion database. What
would be, in this case, a “restrict” and a “restructure” view? “Restrict” views are those
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versioned objects according to a different intension criterion.

Since the intension of a multiversion view is made up of two components — schema and
version semantics — there are four possible ways of constructing the intension, shown in the
following table, where for shorthand notation we will refer to them as types 00, 01, 10 and
11. In general, when we talk of view “of type (i j)” where ¢ stands for version semantics and
7 for schema structuration. In other words, from now on when we say for instance a view is
“of type (10)” we actually mean that “its intension is constructed by restricting versioning
semantics but without altering the source schema”.

Maintains source schema | Restructures source schema
Maintains source Type 00 Type 01

version semantics

Restructures source Type 10 Type 11
version semantics

Let us show these differences through a short example, which will be used throughout
the text. This example is based on a real life application, which is described at length at the
Appendix A. Consider a database for a firm that provides information technology services.
These services include configuring and installing hardware and software components, with
different types of component configurations. We note that, in this paper, the term configu-
ration is used in its usual version context to mean “set of component versions that form a
consistent unit”. Components have different versions, and they are sold together with the
corresponding manuals (which can be in several languages). Part of the firm’s database has
a class called HardwareComponent, which stores information about hardware components,
prices and component compatibility (e.g., parts that can be installed together in a package).
This class schema can be defined as

Class HardwareComponent type
tuple (name: string,
price: real,
compatible: HardwareComponent)

Consider the HardwareComponent objects, at times ¢;, under the multiversion database
mechanism. Internally all is managed as a sequence of database versions {dy,...ds}. Table
1 shows HardwareComponent instances: the first two columns show internal information
managed by the version mechanism (database version identifiers and multiversion object
identifiers); the next column indicates the timestamp (in this case, used as the versioning
criterion); and the other columns show versionable attributes. Strings Ox are multiversion
oids. Asterisks (*) indicate value changes from one version to another. For instance, O1 is a
multiversion object which has three versions (in dy, ds, d3), whereas object O3 has only one
version in all database versions. At any time, the user will access either (dy) or (dz) or (ds)
which consist of consistent units of data. Given this small partial database, we now show
examples of the four possible kinds of multiversion view.



01 t Diskl $10 02
d; 02 Driver2 $10 01
03 Serverl $30 05
01 ty Diskl | $20(*) 02
dy 02 Driver2 $10 01
03 Serverl $30 05
01 i3 Diskl | $40(*) 08(*)
ds 02 Driver2 | $10 O5(%)
03 Serverl $30 05

Table 1 - Component Class Instances across three Versions

Example 2. An example of view of type (00) is Myview00, the standard “select” view
found in the literature: the intension reflects the underlying database intension (no change in
versioning semantics and no change in schema), and the extension is a query that selects part
of the database objects. Suppose, for instance, that it is restricted to HardwareComponents
with price equal to $10. This view is shown in Table 2, where (d;) denotes the source
database versions from which objects were selected, Source Obj denotes the source objects
used to construct the view objects, and vd; denotes the (virtual) database versions (dbv)
within the multiversion view.

Source dbv | Virtual dbv id | Source Obj || Time | Name | Price | CompatWith
(dv) vdy 01 t Disk1 $10 02
02 Driver2 | $10 01
(dy) vd, 02 ty Driver2 | $10 01
(ds) vds 02 13 Driver2 | $10 05

Table 2 - No Intension Change - View of type (00)

Informally, this can be expressed by the query that follows, over the database versions in
the database (MyDatabase). Variables range over database versions (d) or objects in a class
(c) (e.g., see the VQL language for querying database versions of [Abd97]). The expression
c[d] restricts object variable ¢ to range over its logical versions in database version d.

create view MyViewOO as
select d
from d in MyDatabase
¢ in HardwareComponent
where c[d].Price = $10

This view has three virtual database versions; vd; contains two virtual logical object
instances, whereas the other database versions contain only one virtual logical object each.

Example 3. In the second case, MyView(1, the intension’s schema is restructured, but
not the versioning semantics. Suppose this new schema is specified as containing one single
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Virtual Class CompatibilityPairs type

tuple (hardcmpl: tuple(name,Price) from HardwareComponent,
hardcmp2: tuple(name,Price) from HardwareComponent,
cost: real)

where the indication fromHardwareComponent denotes that these schema elements were
derived from the HardwareComponent class schema. Suppose also that the extension is now
defined by selecting pairs of Components which are compatible, and adding up their prices to
a total cost (a new virtual attribute Cost). Again using the informal query syntax adopted,
the extension for this virtual class can be defined as

create view MyViewOl as
select new CompatibilityPairs ( c1[d].sum(c2[d].cost()) )
from d in MyDatabase
cl in HardwareComponent
c2 in HardwareComponent
where c1[d].CompatWith = c2

Source dbv | Virt. dbv id | Source Obj || Time Hardempl Hardemp?2 Cost
(dy) vd, (01, 02) 4 <Diskl, $10> | <Driver2, $10> | sum($10, $10)
(dy) vdy (01, 02) ty | <Diskl, $20> | <Driver2, $10>) | sum($20, $10)

Table 3 - Intension Modification — Modifying the Schema - View type (01)

This view has a new class, but the versions are still organized according to the original
versioning semantics (i.e., time). Thus, each virtual database version is still mapped to
a single source database version. The virtual extension now has new objects (component
pairs), demanding management of virtual oids.

Example 4. In the third case, MyViewl0, the intension is built without restructuring
the source schema, but modifying the versioning semantics. Suppose, for instance, that the
user now wants to group the versions according to a different time frame. If, for example,
Time had been stored before in weeks and now the user wants a biweekly view, furthermore
providing average prices over the two weeks. Times ¢t; and ¢, are generalized into ¢;5, and
only the state of ¢5 is kept; ¢ and t3 are generalized into ts3, keeping the state of t3; and
the biweekly interval which should start at ¢3 is ignored. This is a standard operation in
temporal databases [Sno95], sometimes called temporal generalization, which implies some
kind of generalization operation on time and consequently on related values. The resulting
view takes the assumption, common in temporal databases, that this generalization through
time ignores some of the intermediate states.

! This repeats the classical example in object-oriented views when one wants to show schema reorganiza-
tion through views (e.g., [AB91]).
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(dy, d2) vdy 01 12D Diskl | avg(510,$20) 02
02 Driver2 | avg($10,$10) 01
03 Serverl | avg($30,$30) 05
(dy, ds) vdy 01 tos Diskl | avg(520,540) 08
02 Driver2 | avg($10,$10) 05
03 Serverl | avg($30,$30) 05

Table 4 - Intension Modification — Modifying Version Semantics - View Type (10)

Informally, this may be expressed as follows, where biweek is a function that transforms two
one-week timestamps into the equivalent biweekly timestamp.

create view MyviewlO as
select c[d]
from d in (d1 U 42)
dl in MyDatabase
d2 in MyDatabase
¢ in HardwareComponent
where d1.Time= d2.Time+7
with cld] .Price = avg (c[d1l].Price, c[d2].Price)
and c[d].Time = biweek (c[d1].Time, c[d2].Time)
and c[d].CompWith = c[d2].CompWith

Notice that this type of intension operation may provide other view extensions, depending
on the user’s semantics, which are reflected in the way the extension is built. Again, this is
to be expected, since this is equivalent to changing the temporal granularity with which data
are analyzed. We point out that, besides the temporal database connotation, this type of
operation is typical of OLAP environments [Sho97], where data organized according to some
criteria (dimensions) are restructured either along the same dimension — a OLAP roll-up
operation — or along another dimension (which would correspond to a rotate in OLAP).

Example 5. Finally, the fourth case, MyViewll, is simply achieved by combining cases
(10) and (01). One example is to group compatible component pairs in a biweekly basis,
combining examples 3 and 4.

A more realistic example, partially shown in Table 5, groups components by Price, and
ignores the Compatibility attribute. For instance, virtual database version vd; groups all
logical object versions with price $10. The original database with three database versions
is seen as a database with four versions, where objects are furthermore organized in an-
other way. In its (11) intension, the (10) dimension — version semantics — corresponds to
versioning by price instead of by time; the (01) dimension — schema modification — ignores
Compatibility. The new schema is given by

Virtual Class PriceClassif type
tuple (name:string, time:real)
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(dy,ds, ds vd, (01,02) $10 {< Diskl, t; >, < Driver2, t; >,
< Driver2, t, >, < Driver2, t3 > }

(dy) vd, (01) $20 {< Diskl, t, >}
(dy, dy, d3) vds (03) $30 | {< Serverl, t; >, < Serverl, t, >,

< Serverl, t3 >}

(d3) vd, (01) $40 {< Diskl, t5 >}

Table 5. Intension Modification — Change Version Semantics and Schema - View Type (11)

This extension can be expressed as follows, where Flatten is one of the basic multiversion view
intension creation operators described in section 4.2 and partition is a reserved keyword for
the result of a group-by expression. Flatten, as will be seen, makes all logical object versions
available in a single database version to allow recombining them according to other criteria.
Intuitively, it “flattens” all database versions into a single version, thus making them all
visible at once.

create view Myviewll as
group ¢ in HardwareComponent
from d in Flatten (MyDatabase)
by (Price: c[d].Price)
with (Components: select new PriceClassif (c[dil])
from c[di] in partition

)

The subsequent sections will now formalize multiversion view construction. Sections 4.1
and 4.2 define the operators that specify the view’s intension (by respectively restructuring
schema and version semantics). Section 5 shows how to create the extension by querying
the source database.

4 Defining multiview intension

4.1 Defining the intension: schema structuration operators

This section analyzes operations that restructure the schema (01-view intensions). The goal
of these operations is the construction of a virtual schema from the source schema of the
multiversion database. We borrow [LDB97]’s definition of a database schema and define the
schema as being formed by the classes, persistency roots, methods and inheritance graph
of a database. Different proposals for schema restructuring operations have appeared in
the literature, aiming at view construction (e.g., [TYI88, Run93, LDB97, RR97, LDB98]).
However, most of these view definition mechanisms mix up the issue of schema definition
with that of extension construction. We adopt the set of schema structuration operators
defined by [RR97], extending them to encompass roots.

A virtual schema 5, restructures a source schema S by applying update operations on
S [RR97]. These updates (insert, delete, modify) can be applied to all schema components
(classes, roots, methods and inheritance hierarchy). The schema restructure operations
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extension. Extension creation is the last part of a view definition, and is accomplished by
queries — see Section 5.
The operations which we propose are therefore:

e Operations on classes: Class creation by specialization and/or generalization (adding
and hiding attributes) of existing classes; Class modification, by adding, eliminating or
modifying attributes, and Class elimination. All these operations have repercussions
on the inheritance graph.

o Inheritance graph updates: edge elimination and creation
e Root creation or elimination
e Method creation or elimination

Other update operations (e.g., the addition, deletion or domain change in attributes of
[RRI7]) can be achieved through combinations of these operations. In what follows, we
consider that the inheritance graph has a single root, which is the class Object, from which
all class hierarchies descend (a standard assumption in object-oriented systems).

Persistency root updates. We extend the work of [RR97] by considering virtual per-
sistency roots. Virtual extensions (objects in virtual classes) are attached to virtual roots.
Virtual roots concern us only insofar as they play the role of allowing access to virtual ob-
jects. Virtual roots can either be imported from the source or defined by updates. The
deletion of a root corresponds to hiding it in the view. The creation of a root corresponds to
defining a new virtual root in the view, which will refer to virtual objects. The extension of
a root is defined by a query (e.g., see example 3). When a root is deleted, then the objects
attached to it are no longer accessible in the view, unless they are also reachable via another
persistency root which is available in the view.

Class updates Schema updates must consider the effect on the class extension. Thus, the
set of valid schema updates is restricted to those that present no ambiguity for handling class
exensions. For this reason, just like [RR97, LDB97], when an update creates or modifies a
class so that it generalizes several existing classes, we impose that it becomes a direct subclass
of Object. The same considerations occur for class elimination (and thus elimination of edges
from the inheritance graph). Yet another operation is class hiding, when the class is in the
middle of the hierarchy. The class disappears from the view, but it still exists, and therefore
its subclasses still inherit from it.

Method updates. The creation of new virtual classes pressuposes that new methods may
be defined. Furthermore, methods may also be hidden from the user, or have their bodies
redefined. In all cases, we assume that this is done explicitly when the virtual schema is
created — adding, deleting or re-defining methods.
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itance graph, two other operations may be defined exclusively on the graph — adding new
edges or eliminating edges — without touching the class set. This may introduce multiple
inheritance relationships (edge addition) or eliminate multiple or single inheritance (edge
deletion).

4.2 Defining the intension: operators to reorganize version se-
mantics

Section 4.1 enumerated the operators that specify the virtual schema (01-view intensions).
Versioning semantics dictates the way database versions are constructed. This section defines
the operators that allow this construction (10-view intensions). These operators combine
sets of source database versions, constructing new sets of database versions, which can be
progressively composed to form arbitrarily complex versions.

There are two types of reorganization operators: (a) operators which are applied to sets of
database versions, ignoring their extensions; and (b) operators on extensions, which consider
multiversion objects.

In the database version approach, classes, methods and objects are the versionable enti-
ties. Interdependencies between different entity versions of a multiversion entity are deter-
mined by the following operations:

e logical(multiversion_entity,d), which returns the logical entity version of a multiversion
entity contained in a given database version d:

logical(multiversion_entity, d) = < multiversion_entity,d >;

o physical(logical_entity_version), which maps a logical entity version to one and only
one physical entity version:

physical(logical _entity version) = < physical_entity version >;

o ident(logical_entity_version), which returns the identifier of the multiversion entity for
a given logical entity version:

ident(logical _entity version) = < multiversion_entity >;

o dV(logical_entity_version), which returns the database version identifier for a given
logical entity version:

dV (logical entity version) = < d >;

o value(logical_entity_version), which returns the value of a logical entity version con-
tained in a given database version d:

value(logical entity version) = value(physical(logical _entity version)) = < value > .
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The operators that ignore extensions are set operators that combine source multiversion
databases in order to build a set of database versions. The idea behind these operators is to
create new sets of database versions from an existing set without considering the contents
of these versions.

These operators, defined on Figure 3, rely on the concept of membership. A database
version dq is member of a set of database versions s={d,,d,...d,} if one of the database
versions in s has the same identifier as d;. The identifier of a database version is given by
the function ident. Let DVersion denote a multiversion database.

Y's C DVersion, ¥V d € DVersion,
member(d, s) = true if 3 d; € s | ident(d) = ident(d;) else member(d, s) = false

Figure 2: Membership specification

Difference. Let s; and sy be two sets of source database versions. The difference operator
(s1 - s2) returns a set of the database versions which are members of s; only.

Union. The union operator returns a set of database versions which are members of either
or both the sets.

V sy, s2 C DVersion, difference(s,, s;) = { v | member(v, s, )= true and member(v, s;)=false }

V s1, so C DVersion, union(sy, s5) = { v | member(v, s, )= true or member(v, s, )=true }

Figure 3: Operators on Sets of Database Versions

Other set operators (e.g., intersect) can be derived from these operators, using standard
set theory. Notice that here we do not need to consider object identifiers, just database
version identifiers.

4.2.2 Operators applied on the extension of database versions

The previous operators did not consider individual multiversion objects. The intension
construction operators applied on the extension of database versions are those that, instead,
are applied on object values:

e a select operator, which selects (sets of ) database versions based on the values of some
of their objects;
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in a database version denoted dr (intersect,, dif ference,). The v suffix is added to
differentiate these operators from the previous ones;

e set operators that allow to combine a set of database versions into a single database
version denoted dr, without (union,) or with (flatten) value duplicates.

e and a factor operator which takes one single database version and partitions it into a
set of new database versions according to a user-defined criterion.

These operators can be orthogonally combined to each other, since they are all applied to
database versions to return one or several database versions.

Intuitively, the set operators are similar to standard set operators, extended to consider
individual multiversion objects. The operators are based on simultaneously checking the
value of a multiversion object in different database versions. We recall from section 3.1
that a multiversion object is shared by different database versions dy,..,d,, if its logical object
versions within dy, ..., d,, share the same physical object version. The boolean function share
performs this functionality.

vV mo € MObject,V s C DVersion, V d;, d; € s,
share(mo, s) = true if physical(logical(mo, d;)) = physical(logical(mo, d;))

else share(mo, s) = false

Example 6. Consider again the database of section 3.3 (Table 1). Object O2 has the
same value in database versions d; and ds, corresponding to a given state of Driver2. If s =
{ di,ds }, then share(02,s) = true, but share(O1,s) = false, because object O1 (Diskl)

had a change in price from d; to ds.

Let s = dy,....d, be a set of source database versions. We now define the operators on s
which require querying objects on database versions. These operators are specified in Figure

4.

Select. Select is an operator which, applied to a set of database versions s={d,, d;,...d,},
returns a set sy C s which satisfies the predicate of the selection. A select operator corre-
sponds to a complex query across a set of versions. Select predicates are expressed either
on database versions or on their objects, similar to the VQL query language of [Abd97].
Furthermore, they can involve the use of all operators presented here, 1,e., they can perform
queries on the result of operator application to database versions.

Predicates are expressed by means of formulae of the form:

Qu 51?11,---,Q1m Tim (p1(51?11,---,$1m)9 .0 Qm flfkh---,ka Tlm (pk(l'kh---,l'km)

where Q11,...,Qr, are quantifications over database versions or over objects; p; ... py are
formulae respectively applied on these variables; § is V or A.
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Vs C DVersion select(s, F') = { v | F(v) = true} V { set(d,...,dp) | F(d1,...,dp) = true}

intersecty (da, dp )= dp with extension (dp )= {logicalV(mo, dp ) | share(mo, da, dp) = True}

differencey (da, dp)= dp with eztension(dy )= {logicalV(mo, dr ) | logical V(mo, da) € extension(da)

and share(mo, da, dp )= False}

flatten(s)= dp with extension(dy) = { logical V(< vimo >, dp) | \/ vmo= < mo,dq > € extension(d;) }
i€l

uniony (s)= dp with estension(dy ) = { logical V(< vmo >, dp) | U vmo= < mo,dq > € extension(d;) }
ieln

forall v € DVersion, factor(v,[vdy : expri,...,vdp : exprp])={d; | 1 € [1,..., p] and
extension(d; )= {<< mo,v >,d; > | physical V(<< mo,v >,d; >) € result(expr;)} }

Figure 4: Operators which consider extensions

Difference,. Let d,, d, be two source database versions. The difference, operator returns
a database version dy whose extension is composed of all logical object versions on d, which
do not share a physical version with logical object versions on dj.

Intersect,. The intersect, operator returns a database version dr whose extension is com-
posed of all multiversion objects whose logical versions on d, and dj, share the same physical
version.

Union,. The union, operator returns a database version dr whose extension is defined by
choosing all multiversion objects whose logical version appears in at least d, or d;. Union,
can be generalized to apply to sets of database versions s = { dy...d, }.

Flatten. The flatten operator on s returns a database version dy whose extension contains
all logical object versions which appear in any d; in s, without eliminating duplicates.

Flatten and Union, are operations which can be seen as regrouping all object versions
within a single flat database. They are typically used as an intermediate step for reorganizing
logical versions according to a new criterion. Maintaining or not duplicates depends on what
the user would want to do next. Keeping duplicates means that the entire set of logical
versions of each object is available, even when their value does not change through versions;
eliminating duplicates means that the user is concerned only with state changes. In the first
case, it is always possible to recover the original source database versions, by applying other
operators (see factor) whereas in the second case this may not be possible. The result of
either operation is one single database version where all logical versions are reflected at once,
and to which the user can afterwards apply more complex operations.

One common use for flatten is motivated by the need to handle object evolution across
versions in a single (flat) view. In this case, the user first applies a flatten operation and next
structures the objects in lists according to their value along time. In a historical database,
this is often implemented as a query through time (or, in temporal database terms, query
through time slices [Sno95]).
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without applying any aggregate function, and just nesting attributes in the other dimensions.
More complex uses of the result of flatten, however, have no equivalent OLAP operation,
since they derive from specific application needs. For instance, the user may want to create
consistent configurations of HardwareComponents, obtained by constructing complex objects
from the “flattened” view of the database.

Factor. The factor operator takes one database version, d and generates a set of new
database versions dy ={dy,ds,...d,} according to a user-defined criterion. A user-defined
criterion ¢ is a tuple [vdy @ expri,vdy @ expry, ..., vd, : expr,] where vd; defines the name
of the i*" new virtual database version and expr; is an expression that defines its extension.
This operator allows to partition one source database version into different database versions
according to a new versioning semantics specified by criterion ¢ — i.e., factoring the data.

Example 7. Let us now briefly re-examine the examples of Section 3.3. Example 2 —
view of type (00) — is a simple case of view creation by direct application of a query, and is
equivalent to the standard non-versioned view creation mechanism. Example 3 — view of type
(01) — uses a schema restructuring operation of type class creation using attribute hiding
(attribute compatible of class HardwareComponent) and attribute addition (new virtual
attribute cost). Example 4 — view of type (10) — changes versioning semantics by applying
a Union followed by operations which create versioning aggregates along time. Example
5 — view of type (11) — is more complex. It is the result of applying a flatten operation
followed by an object reorganization using factor on Price (thus, two operations of type
(10)). This is further combined to a (01) schema restructuring operation of type class
creation by specialization, followed by class modification (CompWith attribute hiding).

We now present some additional examples to show further application of the operators,
taken from the real life case study described in Appendix A.

Example 8. Let us start from the HardwareComponent class of Table 1. Suppose the
user wants to find components which did not change throughout the initial evolution of the
database. This is achieved by the intersect operator on the extensions:

intersect,(dy, dy) = dy = {02,03 }.

Since operators can be repeatedly applied to sets of database versions, one can find out the
intersection of all three database versions by applying intersect, twice, i.e.,

intersect,(ds, intersect,(dy, dy)) = dr = {03 }.

This shows that O3 (Serverl) was the only Component which never changed. Similarly,
the dif ference, operator would allow the user to find Components whose characteristics
had changes from one period to another, for instance

dif ference, (dy,dy) = dr = { O1 }

indicates that only Diskl had some change from version d; to ds.

Example 9. Assume that now the user wants to consider the evolution of each Component.
This requires first applying the flatten operator on the database versions of HardwareCom-
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fatten (dy,dy,ds).

Flatten returns a single database version dr, where all instances of O1, O2 and O3
appear in a (flat) state. Now, the versions of each object can be combined in a new class,
to provide its evolution. For instance, all versions of O1 (Diskl) can be structured into a
virtual multiversion object vO; , organized here as a list of all logical versions of O1:

v0, = (< Diskl,t,,$10,02 >, < Diskl,t3,$20,02 >, < Diskl, t3,$40,08 >).

To better illustrate Factor, we will now enhance the database with a new class — Manual
— whose objects are manuals which describe the components’ characteristics

class Manual type tuple
(name: string,
content: Text,
describes: HardwareComponent,
language: string)

A given HardwareComponent may have several manuals in different languages. Furthermore,
a Component’s manuals may be versioned whenever the Component is versioned. The next
table instantiates class Manual for the three database versions {d;, d2, ds3} of the running
example of section 3.3.

Version id | Oid || Time | Name | Content | Describes | Language

M1 t Manl | Textl 01 French

dy M2 Man?2 | Text2 01 Port
M3 Man3 | Text3 02 French
M1 ts Manl | Textl 01 French

ds M2 Man?2 | Text4 01 Port
M3 Man3 | Text3 02 French
M1 ta Manl | Textl 01 French

ds M3 Man3 | Text3 02 French
M5 Manb | Texth 03 French

Table 6. MANUAL Class instances

Example 10. Suppose the user wants to class manuals according to the language they are
written in. This is similar to an OLAP cube rotation operation, along the Language axis,
This can be achieved by the Factor operation as follows

factor(dy, [vdy : Manual language = “French”, vdy : Manual.language = “Port"])

Example 11. Factoring by language is useful when the user wants to find out which
components are ready to be exported to which countries. In order to do this, the user must
consider both database classes (HardwareComponent and Manual) into a single operation.
The following expression will factor database version d; grouping components and manuals,
according to the language:
factor(dy, [vd, : Manual.language = “French” A Component = Manual.describes,
vdy : Manual language = “Port” N Component = Manual.describes))
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operator applied to database version d; would give origin to two virtual database versions:

vd, = { HardwareComp = {O1, 02}, Manual = {M1, M3} }

vdy = { HardwareComp = {01}, Manual = {M2} }

e.g, the virtual database version vd, contains components O1 and O2 and their respective
manuals M1 and M3, which are written in language “French”. Notice this has not changed
the database schema, just reorganized the versions according to a distinct criterion, thus
corresponding to a (10) operation.

We point out that, in cases like this, where more than one class is involved, there is no
equivalent OLAP operation, unless the entire database (all classes together) is seen as a
single unit, with all complex objects broken down into their individual components. If one is
willing to accept this combination, then this example is similar to rotating this unit along the
Language dimension followed by a roll-up along all attributes of the HardwareComponent
class.

Example 12. Finally, consider now a more complex operation, which shows that the op-
erators proposed extend beyond OLAP requirements. Suppose the user wants to reorganize
versioning according to the type of object involved, separating Components from Manuals.
This requires combining two operations: a Flatten, which will place all database objects into
a single view, followed by a Factor operator which will version objects according to their
nature:

factor(flatten(dy, dy,ds), [vd, : d = HarwareComponent,vdy : d = Manual])
As aresult, virtual database version vd, will contain all HardwareComponent objects through
time, and vd;, all Manual objects through time. This is a partitioning ultimately directed
by types and not by values. These two versions (vd, and vd,) can themselves originate new
sets of database versions by application of another Factor operation:

factor(vd,, (vdyy : Time = t1,vdyg : Time = ty, vd,s; Time = 13))

factor(vdy, (vdyy : Time = ty, vdyy : Time = ty, vdps; Time = t3))
{vd,1,vdy2,vd,3} contains only Components; {vdy, vdyy, vdyz} is a set of database versions
containing only Manuals. Different users can work on each set separately, while their links
and original versioning semantics are still maintained by the underlying database version
mechanism.

5 Defining the virtual extension in a multiversion view

Up to now, we were concerned with multiversion view intensions. Here, we discuss view
extensions, providing means for mapping virtual objects and virtual database versions back
to the original source objects and versions. This is a classical problem in object-oriented
view extension management.

In order to specify identifiers of virtual multiversion objects, we borrow the concept of
referent of [LDB97]. Referents are the means through which view objects are traced to their
origin in the source database. Intuitively, referents are identifiers of virtual objects.

A referent is a a pair ( object identifier, class name ) that allows associating a virtual
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more than one class. Referents point to an object as it is seen and as it behaves in a given
class (italics taken from [LDB97]). We use the same concept to define identifiers of logical
objects within multiversion views,

Virtual multiversion object identifiers. We recall that a logical object is denoted by
< mo,d >, where mo is the multiversion object identifier and d is the identifier of a database
version. Logical virtual objects are also defined in the same way, i.e, < vmo,vd >, where
vmo is the identifier of a virtual logical multiversion object and vd is a virtual database
version identifier. A virtual logical object may, however, be constructed from several source
objects, and thus the identifier < vmo,vd > may become very complex, since both vmo and
vd may themselves be complex identifiers.

In order to specify complex identifiers, we again turn to [LDB97], whose complex referents
are represented by ( (o1,¢1), A ... A (04,¢)), denoting that a virtual object is built from the
set of source objects { (0;,¢;)}. In a similar manner, virtual multiversion objects may have
a complex identifier. The expression:

<vmo,vd > = < (< moy, dy >, ... < mo,, dj >), vd >,

denotes a logical virtual object in the virtual database version vd. This logical virtual object
is constructed from source logical multiversion objects { < mo;,d; > }.

Example 13. To illustrate this issue, consider a view containing only one virtual database
version, called vdy, mapped directly from source database version d3 in the HardwareCom-
ponent database of section 3.3 (i.e., vd; = d3). The mapping between each object in this
view and the source database is given by

< v0,vdy > = << Oy;,ds >, vdy >,

where v0; denotes a virtual multiversion object. Intuitively, this denotes that virtual mul-
tiversion object vO; is constructed from the source object < O;,ds >; and that it appears
in the virtual database version vd;.

To extend this to a complex virtual object identifier, let s={d; ...d;} be a set of database
versions, mo be a multiversion object in s and consider the result of dy = flatten (dy, ..., d;).
Each logical version of mo will appear in dr, with identifiers constructed by

<< mo, dy >,dr >, ... << mo,d; >, dr >,

The user can next combine these versions according to new needs, as we have seen in the
previous section. In particular, as shown in Example 9, the user can combine all versions of
a given object in a list to construct historical chains, e.g.,

V0l = < (<< 01, dy >, dp >, ... < o1,d; >, dr >) dr, >
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all logical versions of 0; which appear in the “flattened” view dr, and combining them in a
list available through another view dr,.

This type of stepwise creation of identifiers allows tracking virtual objects back to their
source. To complete this task the view mechanism must know which operators were used. In
order to do this, we use virtual graphs, described next, which provide a means for completely
recreating the construction history of a multiversion view. Figure 4 presents the operators
of section 4.2 together with their extension definition in terms of identifiers.

Virtual graphs - tracking version semantics Virtual graphs record the sequence of
steps performed in order to create the version semantics part of the intension of multiver-
sion views == i.e., for views of type (10) or (11). In this sense, these graphs serve the
same purpose as, for instance, query graphs in database language representation. From an
implementation point of view, these graphs allow keeping track of version and logical object
identifiers, and thus ensure the mapping between a virtual object id and its source object
identifiers.

A wvirtual graph is a directed acyclic graph whose nodes are logical database versions. A
directed edge (d,,d;) in a virtual graph denotes that d, is one of the source database versions
used to construct dy. Node labels specify the (10) intension operation used to construct
the corresponding database version, and allow uniquely determining how the corresponding
database version identifier is to be computed. Intermediate database version identifiers may
be attached as tags to each node.

Figure 5 shows an example of the graph that builds a temporary multiversion database
from a set of database versions S = {d; ...d3}. Node vd; identifies an intermediate operation:
vdy = flatten (dy, ds, ds). Database versions d, and d have been created by applying a factor
operator to dvy. This figure, in fact, graphically reproduces the operations performed in the
beginning of Example 12.

Figure 5: Virtual graph

The function sourceDv determines the identifier of the source database version which
must be considered. This function is polymorphic; as a result, it is defined for each operator
and for a sequence of operators. Let sequence = xq1 0y x5 ... x, where x; may be a database
version or a set of database versions and 6; the operators previously defined. The function
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dv identifier resulting of operators on set of d,
V 0 € {dif ference, union},sourceDv (@ (s, s,)) = { sourceDv(d;) | d; € (s1, s2)}
sourceDv(element({dv}))= source Dv(dv)

dv identifier resulting of operators on d,
sourceDv(dv) = dv
V 0 € {intersect,,dif ference,, union,}, sourceDv(@(dy, d5)) = sourceDv(d;)
sourceDv(flatten(s))= \/ sourceDv(d;) | d; € s

1 €[1...n]

sourceDv(factor(dv,[cry = expry, ..., cr, : expr,])= sourceDv(dv)

Figure 6: Retrieving identifiers of source database versions

Construction of view extensions View extensions are constructed by queries, as is the
standard practice for all view mechanisms. In our case, these queries can be posed using
VQL [Abd97], extended with the operations defined in this paper.

Managing view extensions require the definition of virtual oids— i.e., to allow users to
manipulate virtual objects. Virtual identifier construction is achieved by combining the
notion of referent (complex multiversion object identifier) to the virtual graph and source Dv
operator.

Example 14. Consider the graph of figure 5. The figure stands for Example 12, which

reconfigured the original database to provide views where data are versioned along two axes:

Components and Manuals. We recall this example refers to the expression
factor(flatten(dy, dy,ds), [vd, : d = HarwareComponent,vdy : d = Manual])

Let us just consider objects O1 and M1, and keep track of their evolution. These objects first

go through a flatten operation which will make them visible in a virtual database version

vdy, with identifiers vO; = { < (0O1,d;), vd; > }, i.e.

{ < (01,d1), vdy >, < (O1, d3), vd; >, < (O1, d3) , vdy > }

Analogously, the several logical versions of M1 appear in virtual objects vM;y, i.e.,

{ < (Ml,dy), vd; >, < (M1, dy), vd; >, < (M1, d3) , vdy; > }

Next, virtual database version vd; is factored into two virtual database versions vd, and
vdy. Objects vO;; will be the sources of virtual multiversion objects in vd,, and vM;; will
be the sources of virtual multiversion objects in vd,. Logical object versions in vd, and vdj
are identified by

< v0;, vd, > and < vM;;, vdy, >, e.g.,
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the logical version of O1 in dy, applying some operation that allows it to appear in virtual
database version vd; and finally appear by some other transformation in vd,. The identifi-
cation of which operations were applied is recorded in the graph and the source objects are
found out by sourceDw.

Thus, given the virtual multiversion identifier MyObject, in vd,, its source objects can
be traced back to the original database by traversing the graph in reverse order, using
source Dv, applied to the complex virtual identifier of MyObject.

6 Implementation Issues

This section presents an architecture for implementing multiversion views in a general con-
text, and describes the present implementation stage of a prototype which specializes this
architecture for a specific database system. The general architecture, shown in Figure 7,
is based on the Java Database Binding tools [BST98] developed by Ardent Software. We
just give enough details in order to show the implementation context. For a more detailed
description of this architecture, see [BC00].

The goal of the Java Database Binding tools is to provide Java with persistent capabilities
using the O2 DBMS [BDK92] or any relational DBMS. These tools already allow a limited
form of view specification, since they permit schema restructuration by attribute hiding. Our
prototype is based on this same architecture, but simplifying some of its details. In order to
implement multiversion views using this architecture, the modules represented in shadowed
boxes should be implemented. Multiversion views are thus defined in terms of Java classes,
on top of any database management system, where instances are mapped to underlying
database classes and objects. A multiversion view is therefore manipulated throughout Java
interfaces, and all code is translated into database queries via the Mapping blocks of the
architecture.

The architecture is composed of three main blocks: the Development Environment, which
allows users to specify multiversion views and translates user requests into DBMS requests
and vice-versa; the Runtime block, which is DBMS-independent and provides all the services
needed to implement ODMG interfaces; and the Database Connectivity facilities, which
allows access to different database management systems.

Data flow in the architecture is indicated by the arrows. Users’ specification of mul-
tiversion views are preprocessed, compiled in Java and next mapped to a specification of
underlying database classes and objects by the Mapping tools. Once this mapping is per-
formed, the resulting code is handed to the Bytecode processing, which adds interfaces and
methods required to read and write objects to/from the DBMS in terms of Java bytecode.

At runtime, all is handled by Java applications which are enhanced with postprocessed
Java classes. The management of identifiers of virtual multiversion objects is done at this
stage. The Virtual multiversion object cache is where database objects are initially retrieved,
together with their identifiers. This cache binds Java objects to database objects, using the
multiversion referents mapping mechanism described in section 5.

The central component of the architecture is the set of Mapping tools, which map com-
piled Java classes into the underlying DBMS, according to predefined mapping rules and as-
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inheritance links, method signatures and persistency roots). Their role is to provide the
means for transforming Java classes (which are our virtual multiversion view classes) into
the physical database. Once this mapping is established, the new classes are transformed
into Java bytecode and passed on to applications which will use the view.

The access to the database is performed in three steps. First the Mapping manager
transforms a user or application request into a DBMS operation; next, the Mapping man-
ager creates database queries according to the mapping metadata; finally, the Database
connectivity block sends these queries to the DBMS and returns the result to the Runtime
cache block.

The implementation of our prototype, in construction, is centered in the boxes numbered
(1) through (3) in the figure. First, it is not geared towards a general database environment;
instead, it uses the O2-Ardent DBMS, which implements a version mechanism based on
the Database Version mechanism of [CJ90], in a module called O2Version [02-98]. Thus,
we do not need to implement the Database Version Manager block of the figure, since it is
already available in this commercial product. As a consequence, the bottom block (Database
Connectivity) is replaced in our prototype by O2-Ardent, as indicated by number (4) in the
figure. In the second place, we do not provide automatic bytecode transformation; rather,
the multiversion view operations of Section 4 are transformed by the Mapping tools into a
set of operations which are part of the interfaces of the Java classes managed by Runtime.
These interfaces are not generated automatically - i.e., there exists a specific code for each
multiversion view specification operation, which is handled by the View and Version mapping
managers.

The Version mapping manager translates JAVA operations on multiversion view objects
into O2Version code. It also implements the multiversion view intension operations of section
4.2.1. Queries on versions use the VQL language of [Abd97], which has been implemented in
a prototype on top of O2Version [Cha99]. The View mapping manager handles the remaining
intension operations.

View and Version managers are kept apart in the architecture to allow handling of mul-
tiversion objects by a Java application, regardless of view needs. Thus, for instance, (00)
views do not activate the View mapping generator, since they are just the result of select-
ing parts of the multiversion database schema, and retrieving the corresponding instances.
In this case, user requests are mapped directly via the Version Mapping Manager to the
underlying O2Version module.

7 Conclusions and Directions for Future Work

This paper presented a view mechanism — the multiversion view mechanism — that allows
handling multiple versions of objects through views, thereby combining properties of version
and view mechanisms. This combination is in itself a contribution, since versions and views
have so far been treated in isolated contexts by the database community. In several stages of
the paper we contrasted operations on multiversion views with OLAP or temporal databases,
to show the examples from a different perspective. The goal was also to further motivate
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these domains.
The main advantages of the framework proposed here are:

e Clear construction rules. The construction of multiversion views separates the issues
of intension and extension definition, thereby avoiding problems that frequently occur
in view management mechanisms.

o Closeness to the user’s perspective. Whereas other view mechanisms force upon the
users a non-versioned perspective of the world our proposal eliminates this constraint,
allowing users to construct views containing as many versions of the world as desired.

This type of approach is of immediate application in several contexts: temporal databases
(if versioning is restricted to time), OLAP (for relational databases, or situations where only
one class is considered), and in cooperative design environments in general.

First, since Time is a frequent versioning criterion, our framework can be seen as an
alternative means of handling temporal databases through views, as shown for instance
in Examples 4 and 9. Nevertheless, we cover other situations not considered in temporal
databases, since versioning can encompass attributes other than time. Moreover, several
versions of a given object can exist in a single time period (e.g., when alternatives are created
in design applications). Handling this type of situation is not possible from a temporal
database perspective.

The concept of OLAP originates, among others, from statistical databases and statistical
table handling. OLAP data are organized in tables, where each instance is considered to be a
multi-dimensional description of a real world entity. Tables can be reorganized according to
several criteria, and dimensions may be aggregated or broken down (i.e., providing distinct
views of the database). Transplanted to our framework, this can be performed by creating
views through modifying versioning semantics. For instance, Example 10 is a canonical in-
stance of an OLAP operation in an object oriented context. In other words, if versioning
is performed along single attributes, and the database schema is relatively simple, each at-
tribute can be seen, up to a certain level, as an OLAP dimension. Therefore, we believe that,
if we restrain ourselves to relational databases and non-complex dimensions, our operators
can replicate the basic needs (e.g., [Sho97] — roll-up, drill-down, rotate and select).

On the other hand, as we also point out, our operations extend beyond OLAP, since
they respond to a different set of users’ needs (e.g., see Examples 11 and 12). Furthermore,
contrary to OLAP underlying assumptions, we allow multiple attribute hierarchies per di-
mension. Handling of alternatives is yet another case which has no corresponding OLAP
counterpart, since this requires a means of linking different alternatives of a single object
(and can only be achieved through the versioning mechanism).

The next steps in this research consist in finishing the implementation of the prototype.
Another issue to which we will dedicate attention is that of updatable multiversion views.
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- - - - -

The paper uses a small example (starting in Section 3.3) to illustrate multiversion view
creation and management. This example was extracted from a real case study of management
of configuration of complex information systems. This Appendix gives an overview of this
case study, a typical context in which multiversion views can make a difference. For more
details on this system and its design see [BLP95].

The application concerns the management of a system called 1SS400 of the British infor-
mation technology firm ICL [ICL00]. ISS400 is a system that handles the configuration of
software and hardware for medium to large scale retail points of sale (e.g., super or hyper-
markets, department stores). It is highly configurable, and can be adapted to all kinds of
client that deal with retail outlets and business operations. ICL development and support
teams install and maintain at each client’s site the most appropriate hardware and software
configuration. This is achieved by selecting, from a large component version library, the
appropriate version of each software and hardware component to customize and install at
the client’s sites.

The example database of this paper is extracted from the 1SS400 component library.
View creation examples borrow from typical needs of ICL’s development and support teams.
The component library consists of both hardware and software descriptions, and associated
documentation. As well, it contains description of services that ICL teams can provide.

Examples of hardware components include servers, peripherals, workstations, tills, net-
works, power supply units, network cards, bar code readers, and so on. A component may
have several subcomponents, e.g., a given till may be composed of main board, secondary
boards, keyboard, displays, printers, scanners, cables and interface black boxes. Software
components include source modules, object modules, data specifications and interface look
and feel definitions. Documentation components include external customer manuals as well
as internal specification files describing support and development tasks, such as require-
ments, design blueprints and test plans. The service components include installation, sup-
port, consultancy and training. FEach service module requires specific skills and support
documentation.

In particular, over 15,000 distinct modules are available in the library, each with ap-
proximately 10 versions. Software, hardware, documentation and service components are
furthermore subject to complex dependencies which link program versions to hardware,
documentation and services, defining valid configurations thereof.

A complex configuration may include, for instance, hardware, the operating system en-
vironment, applications, peripherals, cabling, interfaces etc. all of which interact. Any
component may be versioned according to its temporal technological evolution, to customer
variants and to the business processes it is designed to support and work with. The def-
inition of a configuration for a given client is equivalent to the definition of either a (00)
view or a (01) view containing only one version of each object (i.e., one particular version of
each relevant component is picked out). However, configuration creation may require several
operations on all kinds of multiversion views.

Since ICL has clients in over 40 countries, and a client may operate in many countries,
this has an impact on configuration management. For instance, a given supermarked chain
may require several types of tills (e.g., for distinct shops or countries), and therefore distinct
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See, in particular, examples numbered 9 onwards in the text for typical configuration man-
agement requests. Development and installation teams must thus respond to two challenges
- environment evolution due to changes or hardware/software error corrections.

Components have several versions related to their history, and several variants related to
the language, country market or customer specific requirements. Minor changes in a version
generate so-called releases. Each component is identified by internal ICL codes, which also
determine its version (similar to multiversion object identifiers) - e.g., TA_IT_10.0 is the
initial version of a till application, further releases are identified by TA_IT_10.1, TA_IT_10.2
and so on. Consider for instance till application TA_IT_10.0. It runs on point of sale
9520/150R3, which contains among others the components “CPU board R3” and “Pin pad
Dassault LCM 103”. It may also run on point of sale 9520/150R4, which differs from the
previous point of sale by using “CPU board R4”. The till application uses version 3.1 of
software “FORTE”, which runs on either R3 or R4 CPU boards.

In order to minimize the number of parameters to be handled during configuration spec-
ification, 155400 is structured in four layers — hardware, operating system, base software
and application programs. Each layer is handled by a distinct ICL team. To create a new
system version for a customer, each team creates a version of a related specific part of the
system either by reuse, selection and customization of existing component versions or by
development of new component versions. Each of these parts is verified in unit tests, fol-
lowed by integration and validation before installation. Test documentation is integrated to
this configuration. The set of steps previous to and during the installation procedure are
also subject to constraints of team member expertise and availability (who can do what,
where and when). Again, assigning a team to a task can be simplified by creating specific
multiversion views that involve people, constraints and configurations.

The modeling of ISS400 according to the database version model can be seen in [BLP95].
To finish this abridged description of the system, we include a few hardware, software and
configuration constraints, which show further need for multiversion views:

o if a configuration contains a check reader of a pin pad, then it must also contain a
network card X25;

e a hardware integration configuration must include two servers and at least one till and

a hub;

e version 3.1 of FORTE software has been conceived to be installed together with either
R3 or R4 CPU boards;

e program TCF must be installed in version AU33_NDBoard3 if the installation has an
NCR scanner, a Dassault pin board, a 1200 baud Dassault card reader and no F1
keyboard;

e configuration AU_04_VIL5.7A is compatible with the following: (a) FX486/50 proces-
sors, french VGA screen, 2 425MB disks, 32MB RAM; (b)9520/150 family point of
sale tills work with an AU keyboard, cash drawer, RS232 printer interfaces; (¢) etc ...
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