
Multiversion Views: constructing views in amultiversion databaseClaudia Bauzer MedeirosIC - UNICAMP - CP 617613081-970 Campinas SPBrazilcmbm@dcc.unicamp.br Marie-Jo Bellosta andGenevi�eve JomierLAMSADEUniversit�e Paris-Dauphine75775 Paris - Francefbellosta|jomierg@lamsade.dauphine.frAbstractCommercial dbms o�er mechanisms for views and for versions. Research and de-velopment e�orts in these directions are, however, characterized by concentration oneither the one or the other mechanism, very seldom trying to take advantage of theircomplementary properties. This paper presents the multiversion view mechanism,which allows these orthogonal concepts to be managed together, taking advantage oftheir combined characteristics. Unlike previous e�orts to combine views and versions,multiversion views create views over versions of data, thereby o�ering users coherentlogical units of the versioned world. They allow a wide range of (virtual) data reorga-nization possibilities, which encompass, among others, operations found in temporaldatabases and OLAP. Multiversion views are illustrated and motivated by needs froma real life large case study of complex con�guration management, described at the endof the paper.Keywords: Multiversion databases, views, OLAP1 IntroductionDatabase applications need both views and versions to meet distinct requirements. Themain di�erence between versions and views is that versions are permanently stored in thedatabase, whereas views are virtual. This permanent/virtual status is, in fact, one importantdi�erence, but it is not the only one.Versions are employed when the user wants to keep track of the evolution of the entitiesmodeled in the database. This evolution may be just temporal, following a total order (e.g.,when recording changes in personnel in a given enterprise) or may include several othercriteria, being organized according to some partial order (e.g., in keeping track of designalternatives in a cad environment). Nowadays, the use of versions is being extended toseveral domains, notably in planning activities, where the user wants to organize alternativescenarios for decision purposes.Whereas versions keep track of evolution, views provide a virtual image of the database,with three main goals [FSS79]: 1

� restriction for ease of use: the view allows the user to select just the data of interestin the database, hiding unnecessary details;� restriction for security: the view keeps the user from accessing non-authorized data,hiding sensitive data; and� restructuration: the view is the means through which data are restructured accordingto the users' needs, grouping together parts of a database into a virtual work unit,thereby providing another perspective on stored data.More recently, views have been advocated as means of introducing structure into unstruc-tured or semistructured data (e.g., [AGM+97]). In all cases, as far as the user is concerned,a view is a virtual database on its own.Thus, both views and versions must be supported for di�erent reasons. However, thestandard approach is to deal with each separately, even when data are versioned. Conse-quently, views are limited to showing one (non-versioned) state. If users want to see howdata are versioned, they are required to generate distinct views (one per version) and tomaintain the relationships among these views. This is obviously a serious limitation: if thedata are versioned, why not provide views that re
ect this? The main problem is that,since views and versions are always maintained separately, and are conceptually kept apart,combining them presents both design and implementation di�culties. In order to solve thisproblem, this paper introduces multiversion views { a view model which is based on extend-ing a version mechanism which is already available (Cellary and Jomier [CJ90]) with views.This solution has the following main characteristics:� It preserves versioning of data. Views are treated as virtual databases created on topof the source (base) data. If these base data contain versions, then the views mustre
ect this to the users, i.e., they constitute virtual databases with versions.� It maintains view functionality. Multiversion views serve, as any other view, to restrictinformation for ease of use and/or security, and to o�er a restructured perspective ofthe underlying database.As a result, two very useful data management facilities are o�ered. First, multiversionviews allow users to compare and manipulate multiple states (i.e., the versions) of a givenset of database objects, in a single view. The management of inter-relationships betweenobjects and their versions is left to the underlying version mechanism, thus freeing theusers from this type of concern. Second, they allow users to reorganize objects accordingto di�erent versioning criteria, which are not necessarily the same as the original (stored)versioning criterion. As will be shown during the paper, this permits users to manipulatedata as in an OLAP context (e.g., [Sho97]) when restricted to single database classes, orreproducing operations in temporal databases (e.g., [Sno95]). Since versions are also commonin a design context (e.g., CAD applications), multiversion views contribute to enrich a designenvironment with multiple perspectives of the data, constituting a means for enhancingcooperative work.In order to describe multiversion views, we base our work on the database version modelof Cellary and Jomier [CJ90], in an object-oriented context. We have chosen object-oriented2

databases in order to better point out some complex issues that do not arise in relationaldatabases. The database version model of [CJ90] was selected due to the fact that it is basedin a formal description, and that it clearly distinguishes between physical implementationissues and logical user-related issues. Thus, physical issues are appropriately handled by theversion model adopted.An informal description of some of the characteristics of multiversion views was givenin [MBJ96], motivated by the problem of managing multiple representations in geographicapplications. Here we extend and formalize these notions, showing how they can be appliedto a more general framework.The remainder of this paper is organized as follows. Section 2 gives an overview of relatedwork. The subsequent sections of the paper describe the multiversion view mechanism itself.Section 3 introduces multiversion views: Section 3.1 gives a brief overview of the multiversiondatabase model, which is the basis for construction of these views; Sections 3.2 and 3.3informally present multiversion views, and introduce a short example that is used throughoutthe text. Sections 4 and 5 formalize the construction of these views. Section 6 describesthe architecture for implementing multiversion views. Section 7 presents conclusions anddirections for future work. Appendix A describes the real life application from which weextracted the basic example we use to illustrate multiversion views.Throughout the paper, we sometimes use \code notation" (e.g., when we de�ne databaseclasses or specify queries). We stress that we do not follow any speci�c language syntax, butrather are providing an intuitive perspective of operations that lie behind multiversion viewconstruction.2 Related workWork on views and on versions has usually progressed independently. Exceptions are ourown preliminary work on the subject [MBJ96], in the context of geographic applications,the work of Byeon and McLeod [BM93], which tries to provide an integrated frameworkfor working with views and versions, and that of Ra and Rundensteiner [RR97], which usesviews to support schema evolution.Byeon and McLeod's integrated approach tries to unify the concepts of views and ver-sions by considering both to be obtainable from a database by a set of schema and instancetransformation operations. These operations are executed in a sequence of < import, trans-form > steps. Views (and versions) are created by means of schema evolution operationsand instance de�nitions, where schema operations receive special attention. Since the goal isto eliminate any distinction between views and versions, this approach has the shortcomingthat the concept of data versioning, which users �nd useful, is lost. The main di�erencesbetween their views and versions are:� a view can be built from more than one source database; and� a version can only be built on top of a single database, by importing its entire schema,and then transforming it. 3

Similarly, some authors use views to help users check data restructuring; if the usersagree to the restructuring, the view is materialized into a version, and loses all connotationwith views and view mechanisms. Examples are the work of [BFK95], where views serve tovalidate schema evolution, and [Nov95], where views are used to build consistent softwarecon�gurations from a database of software modules, and then stored as versions of a givensoftware. A related proposal is that of [KR97], based on maintaining versions of relationalviews, where these versions are created through a view mechanism (constructing views overviews by means of updates). The goal is to support multiple versions of a given data set,for decision support applications.Ra and Rundensteiner [RR97], on the other hand, are interested in schema evolution (e.g.,for CAD applications). They have developed a system which maintains multiple schemaversions for a given database, allowing \old" and \new" users to share the same data,viewed through distinct schemata. Each version of a schema is handled through mappingsfrom previous to next schema, by means of a schema update mechanism. Eventually, olderschema versions may be abandoned.The remaining literature concentrates either on views or on versions. Byeon and MacLeod[BM93] provide a useful means of analyzing these papers, from an object-oriented perspec-tive, pointing out that the creation of views (or of versions) either concentrates on a singleclass (i.e., a view schema has just one class, or only a class can be versioned) or on multi-ple classes. Earlier work concentrates on the �rst approach, whereas recently authors haveconsidered the issue of multi-class schemata.Versions are a means of storing di�erent states of a given entity, thereby allowing thecontrol of alternatives and of temporal data evolution. Research has appeared mostly in thecontext of CASE systems and CAD/CAM projects, often for object-oriented databases (e.g.,[KSW86, Kat90, KS92, WR94, TO96]). Versions are also often considered in the context ofconcurrency control (e.g., [FD96, LST98]) or as the means to support cooperative work (e.g.,[DL96]). In several cases, versions of a given data set are created by materializing snapshotsof this set. This is usually not seen as a version mechanism, but just as a means of keepingtrack of data through time. Good surveys on di�erent uses for versioning mechanisms appearin [Kat90] and [Man00].Views in databases are usually de�ned as the result of a query. Views may be stored(materialized), but in general it is understood that versions correspond to stable data,whereas though views are generated from stable data, they are usually temporary. Eachproposed view mechanism concentrates on a di�erent issue (e.g., operation translation, datarestructuration capabilities, or data integration properties). The issue of views in relationaldatabases is understood [FSS79, BLT86], but is still a matter of research in object-orienteddatabases (e.g., [AB91, MM91, Ber92, SAD94, LDB98]), as well as in deductive databases(e.g., [YPS95]). As remarked in a thorough survey on view mechanisms [MP96], althoughqueries may be enough to build views in the relational world, this is no longer the case forobject oriented databases, where the schema must be de�ned apart. The appearance of datawarehouses has provided a new �eld for work on materialized views (e.g., [Huy98, YKL98]),restricted to relational queries and their optimization, as well as for creating online aggre-gations of these data { e.g., for OLAP operations, see [BW99].In object-oriented databases, the construction of the view schema should be kept apart4

from view extension speci�cation, since, as shown by [AB91], new virtual classes may bede�ned which cannot be speci�ed by queries. However, none of the proposed mechanismsseparates schema de�nition from extension de�nition, and the issues of schema constructionare thus blurred with those of extension speci�cation and oid (object identi�er) de�nition.One of the �rst papers to consider views in terms of schema restructuration was [TYI88],who considers view creation in terms of schema de�nition (by operations on the inheritancegraph), implemented in Smalltalk. Di�erent sets of schema structuration operations wereproposed by [KC88] (in the context of the ORION project), [Run93] (for CAD data integra-tion and customization), [BFK95] and [LDB97, LDB98] (formalizing a data model for viewsin object oriented database systems) and [FR97] (for constructing object oriented views ontop of relational databases).Multiversion views, as we show next, di�er from all other proposals which try to combineviews and versions by allowing users to \see" multiple consistent versioned states of the worldthroughout views. These versioned states can either re
ect the way data are organized, butjust showing parts of the database (akin to the \restrict" views of Section 1) or reorganize theunderlying database by schema or versioning changes (akin to the \restructure"). Existingmethods cannot perform the same tasks. First, no other study allows de�ning a view withsimultaneous access to multiple versions in a database while at the same time ensuringversion consistency. Furthermore, multiversion views also allow changing versioning criteriavirtually, which we call changing version semantics. This, again, is not available elsewhere.3 The Concept of Views over Multiversion DatabasesThe previous section brie
y considered work on views and versions, showing that most ofthis work treats these issues separately. We, on the other hand, propose a mechanism thatencompasses both, but yet allows them to be treated separately. Multiversion views areviews which are built on top of a multiversion database, constructed using the databaseversion approach of [CJ90].This section presents these views informally, and the subsequent sections formalize thede�nition. The �rst part of the section gives an outline of the database version approach, andthe second part gives a high level description of the multiversion view de�nition, introducinga simpli�ed example which we use throughout the paper. The example is based on a reallife case study described in Appendix A.3.1 The database version approachOur paper concerns building views for a database with versions. Several version mechanismshave been proposed in the literature (e.g., [CK86, Kat90, Bla91, Sci91]). In this section, webrie
y present the database version approach [CJ90, GJ94], which we will use as the versionmodel and mechanism for our work. The advantages of this approach have been discussedelsewhere, and do not concern this paper.Database version A conventional monoversion database (i.e., a database where versionsare not considered) represents one state of a modeled part of the world. In the database5

version approach, a multiversion database simultaneously represents several states of themodeled part of the world. Each state is called a database version. A database version,denoted d, has an identi�er, denoted di, and contains a version of each object stored in thedatabase. A database version is de�ned by the couple <schema, logical extension version>.A logical extension version re
ects one (versioned) state of the modeled world, and roughlycorresponds to the extension of a monoversion database.A multiversion database contains multiversion objects, i.e., each object therein is com-posed of several logical object versions. A multiversion object is denoted by mo. A logicalobject version is similar to an object in a monoversion database: it has an identi�er and avalue. A logical extension version contains a logical object version of each object stored inthe database. Given a multiversion object mo, and a set of database versions fd1; d2 : : : dng,the identi�er of the logical version of mo contained in some database version dk is givenby < mo; dk >. More generally, the identi�er of a logical version of a multiversion objectcontained in a database version is a couple <multiversion object identi�er, database versionidenti�er>, denoting the fact that a given multiversion object may have a di�erent value foreach database version.Since, formally, all the objects that exist in the multiversion database appear logically ateach database version, a special value ?, meaning does not exist, is used to express objectnon{existence in a particular database version.Physical object versions. Since di�erent database versions usually di�er only partiallyfrom one another, logical versions of an object often have identical values. To avoid redun-dancy, they are mapped to a physical object version, which can be shared by several databaseversions.Derivation operation. Database versions are created by derivation. A derivation op-eration is addressed to a speci�c database version, which becomes the derivation's parentdatabase version, and it derives a child database version, which, just after the derivation, isa logical copy of the parent. A database version may have as many children as desired. Oncecreated, a database version evolves automonously, according to transactions addressed to it.For optimization reasons, the trace of database version derivation is kept by the databasemanagement system.Example 1. Figure 1 presents an example of a multiversion database which has threelogical database versions d1; d2; d3, for hardware components. The database contains twoobjects each of which has a name (resp., DISK1, DRIVER2) and a price (represented by $$in the �gure). d2 and d3 present alternatives for an overall price reduction, given the initialscenario in d1. For instance, the price of DISK1 is $$$ in d1, and $ in d2 (DRIVER2 wasnot a�ected), or much larger in d3 (DRIVER2 was discarded). The fact that DRIVER2was discarded is represented in d3 by symbol ?, indicating that DRIVER2 does not existin that speci�c database version. If mo1 and mo2 are the multiversion object identi�ers forrespectively DISK1 and DRIVER2, then < mo1, d3 > stands for DISK1's state at databaseversion d3 (i.e., a logical version of DISK1). Database versions d2 and d3 are both derivedfrom the database version d1, as two alternatives. DISK1's price is di�erent in each database6

version, and therefore its three logical versions are bound to three di�erent physical versions.DRIVER2 had no changes from d1 to d2, and therefore its logical versions share the samephysical version.
DISK1

DRIVER2

$$$

$$$$

DISK1

DRIVER2

DISK1

$$$$

$

$$$$$

d1

d2

d3Figure 1: Example of a multiversion database and its derivation graphUpdating a logical object version. The key operation in the model is the update ofa logical version of an object, i.e., updating the object's value within a particular databaseversion. To update a logical object version contained in a database version d, �rst, thecorresponding physical object version is identi�ed. If it is unshared, it can be simply updated.If it is shared by several logical object versions, then a new physical object version is created,in which changes are introduced. As a result, the shallow equality between two objectsbecomes, in a multiversion database, the identity between the physical versions of two logicalobject versions, assuming that it is never the case that two distinct physical versions of oneobject have the same value.To delete a logical object version, i.e., to delete an object in a particular database version,it is su�cient to update it with the ? value. To create a new multiversion object, �rst, its? version is created and implicitly associated with all the database versions. Next, it maybe updated in selected database versions, as required.Complex object versioning. The database version approach is particularly advanta-geous in the management of complex objects, i.e., objects referencing other objects, becauseit provides orthogonality between composition and versioning. Just as a complex objectpoints at its components, a version of a complex object contains multiversion object identi-�ers as references to components.3.2 Virtual Multiversion DatabasesParaphrasing [AGM+97], for the user, the view is a \stand-alone" database created from theoriginal database. Consequently, if we start from a multiversion database, then it is natural7

that a view should be allowed to be manipulated as a multiversion database of its own.We call this original database the source database for view construction, which itself maycontain views { i.e., a view may be built on top of other views. Thus, the key concept ofthe view de�nition presented in this paper is that a view is a virtual multiversion databaseconstructed from some source multiversion database.A multiversion view is de�ned by the tuple< Virtual intension; Virtual extension >where both intension and extension are built from the source database. In standarddatabase theory, the intension of a database corresponds to its schema. Here, we extendthis notion, in order to let it encompass versioning criteria as well, i.e.,Virtual intension = < Definition of the virtual schema ;Definition of the virtual version semantics >Virtual extension = set of queries over the source databaseSince the view is a multiversion database, it is composed of virtual database versions. Werecall that a database version d is de�ned by the couple <logical schema, logical extension>.Thus, a virtual database version is de�ned by the couple <virtual logical schema, virtuallogical extension >.Having de�ned these concepts, we now state the basics of multiversion view construction.Multiversion views are constructed according to two steps:1. Intension de�nition (formalized at section 4)� speci�cation of view schema; and� speci�cation of version semantics2. Extension de�nition, by querying the database (described at section 5).If neither schema nor version criteria are modi�ed, our views indeed correspond to stan-dard views (always assuming that standard views allow data versioning, which is not nor-mally the case). However, if at least one of these is modi�ed, then new issues are raised.Furthermore, version restructuring to our knowledge is not available by any existingmethod, unless the whole database is re-created. Schema restructuring, on the other hand,is available within certain limits, see section 2.3.3 Basic intension de�nitionTraditionally, a database view may either just re
ect part of an underlying database {i.e., by selecting the entire underlying schema, or part of it, and choosing some instances(\restriction" view) { or, alternatively, restructure the database (\restructure" view) { i.e.,by restructuring the schema and then creating the instances.A view on a multiversion database is itself a (virtual) multiversion database. Whatwould be, in this case, a \restrict" and a \restructure" view? \Restrict" views are those8

which re
ect the underlying intension semantics, while \restructure" views re-arrange theversioned objects according to a di�erent intension criterion.Since the intension of a multiversion view is made up of two components { schema andversion semantics { there are four possible ways of constructing the intension, shown in thefollowing table, where for shorthand notation we will refer to them as types 00, 01, 10 and11. In general, when we talk of view \of type (i j)" where i stands for version semantics andj for schema structuration. In other words, from now on when we say for instance a view is\of type (10)" we actually mean that \its intension is constructed by restricting versioningsemantics but without altering the source schema".Maintains source schema Restructures source schemaMaintains source Type 00 Type 01version semanticsRestructures source Type 10 Type 11version semanticsLet us show these di�erences through a short example, which will be used throughoutthe text. This example is based on a real life application, which is described at length at theAppendix A. Consider a database for a �rm that provides information technology services.These services include con�guring and installing hardware and software components, withdi�erent types of component con�gurations. We note that, in this paper, the term con�gu-ration is used in its usual version context to mean \set of component versions that form aconsistent unit". Components have di�erent versions, and they are sold together with thecorresponding manuals (which can be in several languages). Part of the �rm's database hasa class called HardwareComponent, which stores information about hardware components,prices and component compatibility (e.g., parts that can be installed together in a package).This class schema can be de�ned asClass HardwareComponent typetuple (name: string,price: real,compatible: HardwareComponent)Consider the HardwareComponent objects, at times ti, under the multiversion databasemechanism. Internally all is managed as a sequence of database versions fd1; : : : d3g. Table1 shows HardwareComponent instances: the �rst two columns show internal informationmanaged by the version mechanism (database version identi�ers and multiversion objectidenti�ers); the next column indicates the timestamp (in this case, used as the versioningcriterion); and the other columns show versionable attributes. Strings Ox are multiversionoids. Asterisks (*) indicate value changes from one version to another. For instance, O1 is amultiversion object which has three versions (in d1, d2, d3), whereas object O3 has only oneversion in all database versions. At any time, the user will access either (d1) or (d2) or (d3)which consist of consistent units of data. Given this small partial database, we now showexamples of the four possible kinds of multiversion view.9

Version id Oid Time Name Price CompatWithO1 t1 Disk1 $10 O2d1 O2 Driver2 $10 O1O3 Server1 $30 O5O1 t2 Disk1 $20(*) O2d2 O2 Driver2 $10 O1O3 Server1 $30 O5O1 t3 Disk1 $40(*) O8(*)d3 O2 Driver2 $10 O5(*)O3 Server1 $30 O5Table 1 - Component Class Instances across three VersionsExample 2. An example of view of type (00) is Myview00, the standard \select" viewfound in the literature: the intension re
ects the underlying database intension (no change inversioning semantics and no change in schema), and the extension is a query that selects partof the database objects. Suppose, for instance, that it is restricted to HardwareComponentswith price equal to $10. This view is shown in Table 2, where (dj) denotes the sourcedatabase versions from which objects were selected, Source Obj denotes the source objectsused to construct the view objects, and vdj denotes the (virtual) database versions (dbv)within the multiversion view.Source dbv Virtual dbv id Source Obj Time Name Price CompatWith(d1) vd1 O1 t1 Disk1 $10 O2O2 Driver2 $10 O1(d2) vd2 O2 t2 Driver2 $10 O1(d3) vd3 O2 t3 Driver2 $10 O5Table 2 - No Intension Change - View of type (00)Informally, this can be expressed by the query that follows, over the database versions inthe database (MyDatabase). Variables range over database versions (d) or objects in a class(c) (e.g., see the VQL language for querying database versions of [Abd97]). The expressionc[d] restricts object variable c to range over its logical versions in database version d.create view MyView00 asselect dfrom d in MyDatabasec in HardwareComponentwhere c[d].Price = $10This view has three virtual database versions; vd1 contains two virtual logical objectinstances, whereas the other database versions contain only one virtual logical object each.Example 3. In the second case, MyView01, the intension's schema is restructured, butnot the versioning semantics. Suppose this new schema is speci�ed as containing one single10

class CompatibilityPairs as follows1:Virtual Class CompatibilityPairs typetuple (hardcmp1: tuple(name,Price) from HardwareComponent,hardcmp2: tuple(name,Price) from HardwareComponent,cost: real)where the indication fromHardwareComponent denotes that these schema elements werederived from the HardwareComponent class schema. Suppose also that the extension is nowde�ned by selecting pairs of Components which are compatible, and adding up their prices toa total cost (a new virtual attribute Cost). Again using the informal query syntax adopted,the extension for this virtual class can be de�ned ascreate view MyView01 asselect new CompatibilityPairs (c1[d].sum(c2[d].cost()))from d in MyDatabasec1 in HardwareComponentc2 in HardwareComponentwhere c1[d].CompatWith = c2Source dbv Virt. dbv id Source Obj Time Hardcmp1 Hardcmp2 Cost(d1) vd1 (O1, O2) t1 <Disk1, $10> <Driver2, $10> sum($10, $10)(d2) vd2 (O1, O2) t2 <Disk1, $20> <Driver2, $10>) sum($20, $10)Table 3 - Intension Modi�cation { Modifying the Schema - View type (01)This view has a new class, but the versions are still organized according to the originalversioning semantics (i.e., time). Thus, each virtual database version is still mapped toa single source database version. The virtual extension now has new objects (componentpairs), demanding management of virtual oids.Example 4. In the third case, MyView10, the intension is built without restructuringthe source schema, but modifying the versioning semantics. Suppose, for instance, that theuser now wants to group the versions according to a di�erent time frame. If, for example,Time had been stored before in weeks and now the user wants a biweekly view, furthermoreproviding average prices over the two weeks. Times t1 and t2 are generalized into t12, andonly the state of t2 is kept; t2 and t3 are generalized into t23, keeping the state of t3; andthe biweekly interval which should start at t3 is ignored. This is a standard operation intemporal databases [Sno95], sometimes called temporal generalization, which implies somekind of generalization operation on time and consequently on related values. The resultingview takes the assumption, common in temporal databases, that this generalization throughtime ignores some of the intermediate states.1This repeats the classical example in object-oriented views when one wants to show schema reorganiza-tion through views (e.g., [AB91]). 11

Source dbv Virtual dbv id Source Obj Time Name Price CompWith(d1, d2) vd1 O1 t12 Disk1 avg($10,$20) O2O2 Driver2 avg($10,$10) O1O3 Server1 avg($30,$30) O5(d2, d3) vd2 O1 t23 Disk1 avg($20,$40) O8O2 Driver2 avg($10,$10) O5O3 Server1 avg($30,$30) O5Table 4 - Intension Modi�cation { Modifying Version Semantics - View Type (10)Informally, this may be expressed as follows, where biweek is a function that transforms twoone-week timestamps into the equivalent biweekly timestamp.create view Myview10 asselect c[d]from d in (d1 U d2)d1 in MyDatabased2 in MyDatabasec in HardwareComponentwhere d1.Time= d2.Time+7with c[d].Price = avg (c[d1].Price, c[d2].Price)and c[d].Time = biweek (c[d1].Time, c[d2].Time)and c[d].CompWith = c[d2].CompWithNotice that this type of intension operation may provide other view extensions, dependingon the user's semantics, which are re
ected in the way the extension is built. Again, this isto be expected, since this is equivalent to changing the temporal granularity with which dataare analyzed. We point out that, besides the temporal database connotation, this type ofoperation is typical of OLAP environments [Sho97], where data organized according to somecriteria (dimensions) are restructured either along the same dimension { a OLAP roll-upoperation { or along another dimension (which would correspond to a rotate in OLAP).Example 5. Finally, the fourth case, MyView11, is simply achieved by combining cases(10) and (01). One example is to group compatible component pairs in a biweekly basis,combining examples 3 and 4.A more realistic example, partially shown in Table 5, groups components by Price, andignores the Compatibility attribute. For instance, virtual database version vd1 groups alllogical object versions with price $10. The original database with three database versionsis seen as a database with four versions, where objects are furthermore organized in an-other way. In its (11) intension, the (10) dimension { version semantics { corresponds toversioning by price instead of by time; the (01) dimension { schema modi�cation { ignoresCompatibility. The new schema is given byVirtual Class PriceClassif typetuple (name:string, time:real)12

Source dbv Virtual dbv Source Obj Price Compset(d1,d2, d3 vd1 (O1,O2) $10 f< Disk1, t1 >, < Driver2, t1 >,< Driver2, t2 >, < Driver2, t3 > g(d2) vd2 (O1) $20 f< Disk1, t2 >g(d1, d2, d3) vd3 (O3) $30 f< Server1, t1 >, < Server1, t2 >,< Server1, t3 >g(d3) vd4 (O1) $40 f< Disk1, t3 >gTable 5. Intension Modi�cation { Change Version Semantics and Schema - View Type (11)This extension can be expressed as follows, where Flatten is one of the basic multiversion viewintension creation operators described in section 4.2 and partition is a reserved keyword forthe result of a group-by expression. Flatten, as will be seen, makes all logical object versionsavailable in a single database version to allow recombining them according to other criteria.Intuitively, it \
attens" all database versions into a single version, thus making them allvisible at once.create view Myview11 asgroup c in HardwareComponentfrom d in Flatten (MyDatabase)by (Price: c[d].Price)with (Components: select new PriceClassif (c[di])from c[di] in partition)The subsequent sections will now formalize multiversion view construction. Sections 4.1and 4.2 de�ne the operators that specify the view's intension (by respectively restructuringschema and version semantics). Section 5 shows how to create the extension by queryingthe source database.4 De�ning multiview intension4.1 De�ning the intension: schema structuration operatorsThis section analyzes operations that restructure the schema (01-view intensions). The goalof these operations is the construction of a virtual schema from the source schema of themultiversion database. We borrow [LDB97]'s de�nition of a database schema and de�ne theschema as being formed by the classes, persistency roots, methods and inheritance graphof a database. Di�erent proposals for schema restructuring operations have appeared inthe literature, aiming at view construction (e.g., [TYI88, Run93, LDB97, RR97, LDB98]).However, most of these view de�nition mechanisms mix up the issue of schema de�nitionwith that of extension construction. We adopt the set of schema structuration operatorsde�ned by [RR97], extending them to encompass roots.A virtual schema Sv restructures a source schema S by applying update operations onS [RR97]. These updates (insert, delete, modify) can be applied to all schema components(classes, roots, methods and inheritance hierarchy). The schema restructure operations13

will thus be expressed in terms of updates to the source schema, without considering theextension. Extension creation is the last part of a view de�nition, and is accomplished byqueries { see Section 5.The operations which we propose are therefore:� Operations on classes: Class creation by specialization and/or generalization (addingand hiding attributes) of existing classes; Class modi�cation, by adding, eliminating ormodifying attributes, and Class elimination. All these operations have repercussionson the inheritance graph.� Inheritance graph updates: edge elimination and creation� Root creation or elimination� Method creation or eliminationOther update operations (e.g., the addition, deletion or domain change in attributes of[RR97]) can be achieved through combinations of these operations. In what follows, weconsider that the inheritance graph has a single root, which is the class Object, from whichall class hierarchies descend (a standard assumption in object-oriented systems).Persistency root updates. We extend the work of [RR97] by considering virtual per-sistency roots. Virtual extensions (objects in virtual classes) are attached to virtual roots.Virtual roots concern us only insofar as they play the role of allowing access to virtual ob-jects. Virtual roots can either be imported from the source or de�ned by updates. Thedeletion of a root corresponds to hiding it in the view. The creation of a root corresponds tode�ning a new virtual root in the view, which will refer to virtual objects. The extension ofa root is de�ned by a query (e.g., see example 3). When a root is deleted, then the objectsattached to it are no longer accessible in the view, unless they are also reachable via anotherpersistency root which is available in the view.Class updates Schema updates must consider the e�ect on the class extension. Thus, theset of valid schema updates is restricted to those that present no ambiguity for handling classexensions. For this reason, just like [RR97, LDB97], when an update creates or modi�es aclass so that it generalizes several existing classes, we impose that it becomes a direct subclassof Object. The same considerations occur for class elimination (and thus elimination of edgesfrom the inheritance graph). Yet another operation is class hiding, when the class is in themiddle of the hierarchy. The class disappears from the view, but it still exists, and thereforeits subclasses still inherit from it.Method updates. The creation of new virtual classes pressuposes that new methods maybe de�ned. Furthermore, methods may also be hidden from the user, or have their bodiesrede�ned. In all cases, we assume that this is done explicitly when the virtual schema iscreated { adding, deleting or re-de�ning methods.14

Inheritance graph updates. Besides class updates, which have side-e�ects on the inher-itance graph, two other operations may be de�ned exclusively on the graph { adding newedges or eliminating edges { without touching the class set. This may introduce multipleinheritance relationships (edge addition) or eliminate multiple or single inheritance (edgedeletion).4.2 De�ning the intension: operators to reorganize version se-manticsSection 4.1 enumerated the operators that specify the virtual schema (01-view intensions).Versioning semantics dictates the way database versions are constructed. This section de�nesthe operators that allow this construction (10-view intensions). These operators combinesets of source database versions, constructing new sets of database versions, which can beprogressively composed to form arbitrarily complex versions.There are two types of reorganization operators: (a) operators which are applied to sets ofdatabase versions, ignoring their extensions; and (b) operators on extensions, which considermultiversion objects.In the database version approach, classes, methods and objects are the versionable enti-ties. Interdependencies between di�erent entity versions of a multiversion entity are deter-mined by the following operations:� logical(multiversion entity,d), which returns the logical entity version of a multiversionentity contained in a given database version d:logical(multiversion entity; d) = < multiversion entity; d >;� physical(logical entity version), which maps a logical entity version to one and onlyone physical entity version:physical(logical entity version) = < physical entity version >;� ident(logical entity version), which returns the identi�er of the multiversion entity fora given logical entity version:ident(logical entity version) = < multiversion entity >;� dV(logical entity version), which returns the database version identi�er for a givenlogical entity version: dV (logical entity version) = < d >;� value(logical entity version), which returns the value of a logical entity version con-tained in a given database version d:value(logical entity version) = value(physical(logical entity version)) =< value > :15

4.2.1 Operators that disregard extensionsThe operators that ignore extensions are set operators that combine source multiversiondatabases in order to build a set of database versions. The idea behind these operators is tocreate new sets of database versions from an existing set without considering the contentsof these versions.These operators, de�ned on Figure 3, rely on the concept of membership. A databaseversion d1 is member of a set of database versions s=fda; db; : : : dng if one of the databaseversions in s has the same identi�er as d1. The identi�er of a database version is given bythe function ident. Let DVersion denote a multiversion database.8 s � DV ersion, 8 d 2 DV ersion,member(d, s) = true if 9 di 2 s j ident(d) = ident(di) else member(d, s) = falseFigure 2: Membership speci�cationDi�erence. Let s1 and s2 be two sets of source database versions. The di�erence operator(s1 - s2) returns a set of the database versions which are members of s1 only.Union. The union operator returns a set of database versions which are members of eitheror both the sets.8 s1; s2 � DV ersion, di�erence(s1, s2) = f v j member(v, s1)= true and member(v, s2)=false g8 s1; s2 � DV ersion, union(s1, s2) = f v j member(v, s1)= true or member(v, s2)=true gFigure 3: Operators on Sets of Database VersionsOther set operators (e.g., intersect) can be derived from these operators, using standardset theory. Notice that here we do not need to consider object identi�ers, just databaseversion identi�ers.4.2.2 Operators applied on the extension of database versionsThe previous operators did not consider individual multiversion objects. The intensionconstruction operators applied on the extension of database versions are those that, instead,are applied on object values:� a select operator, which selects (sets of) database versions based on the values of someof their objects; 16

� set operators that allow to project two source database versions and store the resultin a database version denoted dT (intersectv, differencev). The v su�x is added todi�erentiate these operators from the previous ones;� set operators that allow to combine a set of database versions into a single databaseversion denoted dT , without (unionv) or with (
atten) value duplicates.� and a factor operator which takes one single database version and partitions it into aset of new database versions according to a user-de�ned criterion.These operators can be orthogonally combined to each other, since they are all applied todatabase versions to return one or several database versions.Intuitively, the set operators are similar to standard set operators, extended to considerindividual multiversion objects. The operators are based on simultaneously checking thevalue of a multiversion object in di�erent database versions. We recall from section 3.1that a multiversion object is shared by di�erent database versions d1,..,dn if its logical objectversions within d1, ..., dn share the same physical object version. The boolean function shareperforms this functionality.8 mo 2 MObject, 8 s � DV ersion, 8 di, dj 2 s,share(mo, s) = true if physical(logical(mo, di)) = physical(logical(mo, dj))else share(mo, s) = falseExample 6. Consider again the database of section 3.3 (Table 1). Object O2 has thesame value in database versions d1 and d2, corresponding to a given state of Driver2. If s =f d1,d2 g, then share(O2; s) = true, but share(O1; s) = false, because object O1 (Disk1)had a change in price from d1 to d2.Let s = d1,...,dn be a set of source database versions. We now de�ne the operators on swhich require querying objects on database versions. These operators are speci�ed in Figure4.Select. Select is an operator which, applied to a set of database versions s=fda; db; : : : dng,returns a set sT � s which satis�es the predicate of the selection. A select operator corre-sponds to a complex query across a set of versions. Select predicates are expressed eitheron database versions or on their objects, similar to the VQL query language of [Abd97].Furthermore, they can involve the use of all operators presented here, i,e., they can performqueries on the result of operator application to database versions.Predicates are expressed by means of formulae of the form:Q11 x11; : : : ; Q1m x1m (p1(x11; : : : ; x1m)� : : : � Qk1 xk1; : : : ; Qkm xkm (pk(xk1; : : : ; xkm)where Q11; : : : ; Qkn are quanti�cations over database versions or over objects; p1 : : : pk areformulae respectively applied on these variables; � is _ or ^.17

8s � DV ersion select(s; F) = f v j F(v) = trueg _ f set(d1; : : : ; dp) j F(d1; : : : ; dp) = truegintersectv (da, db)= dT with extension (dT)= flogicalV(mo, dT) j share(mo, da, db) = Truegdi�erencev (da, db)= dT with extension(dT)= flogicalV(mo, dT) j logicalV(mo, da) 2 extension(da)and share(mo, da, db)= Falseg
atten(s)= dT with extension(dT) = f logicalV(< vmo >, dT) j _i 2 1;n vmo= < mo; da > 2 extension(di) gunionv(s)= dT with extension(dT) = f logicalV(< vmo >, dT) j [i 2 1;n vmo= < mo; da > 2 extension(di) gforall v 2 DV ersion, factor(v,[vd1 : expr1; : : : ; vdp : exprp])=fdi j i 2 [1,: : :, p] andextension(di)= f<< mo; v >; di > j physicalV(<< mo; v >; di >) 2 result(expri)g gFigure 4: Operators which consider extensionsDi�erencev. Let da, db be two source database versions. The di�erencev operator returnsa database version dT whose extension is composed of all logical object versions on da whichdo not share a physical version with logical object versions on db.Intersectv. The intersectv operator returns a database version dT whose extension is com-posed of all multiversion objects whose logical versions on da and db share the same physicalversion.Unionv. The unionv operator returns a database version dT whose extension is de�ned bychoosing all multiversion objects whose logical version appears in at least da or db. Unionvcan be generalized to apply to sets of database versions s = f d1 : : : dn g.Flatten. The
atten operator on s returns a database version dT whose extension containsall logical object versions which appear in any di in s, without eliminating duplicates.Flatten and Unionv are operations which can be seen as regrouping all object versionswithin a single
at database. They are typically used as an intermediate step for reorganizinglogical versions according to a new criterion. Maintaining or not duplicates depends on whatthe user would want to do next. Keeping duplicates means that the entire set of logicalversions of each object is available, even when their value does not change through versions;eliminating duplicates means that the user is concerned only with state changes. In the �rstcase, it is always possible to recover the original source database versions, by applying otheroperators (see factor) whereas in the second case this may not be possible. The result ofeither operation is one single database version where all logical versions are re
ected at once,and to which the user can afterwards apply more complex operations.One common use for
atten is motivated by the need to handle object evolution acrossversions in a single (
at) view. In this case, the user �rst applies a
atten operation and nextstructures the objects in lists according to their value along time. In a historical database,this is often implemented as a query through time (or, in temporal database terms, querythrough time slices [Sno95]). 18

In OLAP, this reorganization is similar to doing a roll-up operation along one dimension,without applying any aggregate function, and just nesting attributes in the other dimensions.More complex uses of the result of
atten, however, have no equivalent OLAP operation,since they derive from speci�c application needs. For instance, the user may want to createconsistent con�gurations of HardwareComponents, obtained by constructing complex objectsfrom the \
attened" view of the database.Factor. The factor operator takes one database version, d and generates a set of newdatabase versions dT =fd1; d2; : : : dpg according to a user-de�ned criterion. A user-de�nedcriterion c is a tuple [vd1 : expr1; vd2 : expr2; : : : ; vdp : exprp] where vdi de�nes the nameof the ith new virtual database version and expri is an expression that de�nes its extension.This operator allows to partition one source database version into di�erent database versionsaccording to a new versioning semantics speci�ed by criterion c { i.e., factoring the data.Example 7. Let us now brie
y re-examine the examples of Section 3.3. Example 2 {view of type (00) { is a simple case of view creation by direct application of a query, and isequivalent to the standard non-versioned view creation mechanism. Example 3 { view of type(01) { uses a schema restructuring operation of type class creation using attribute hiding(attribute compatible of class HardwareComponent) and attribute addition (new virtualattribute cost). Example 4 { view of type (10) { changes versioning semantics by applyinga Union followed by operations which create versioning aggregates along time. Example5 { view of type (11) { is more complex. It is the result of applying a
atten operationfollowed by an object reorganization using factor on Price (thus, two operations of type(10)). This is further combined to a (01) schema restructuring operation of type classcreation by specialization, followed by class modi�cation (CompWith attribute hiding).We now present some additional examples to show further application of the operators,taken from the real life case study described in Appendix A.Example 8. Let us start from the HardwareComponent class of Table 1. Suppose theuser wants to �nd components which did not change throughout the initial evolution of thedatabase. This is achieved by the intersect operator on the extensions:intersectv(d1, d2) = dT = fO2; O3 g.Since operators can be repeatedly applied to sets of database versions, one can �nd out theintersection of all three database versions by applying intersectv twice, i.e.,intersectv(d3, intersectv(d1, d2)) = dT = fO3 g.This shows that O3 (Server1) was the only Component which never changed. Similarly,the differencev operator would allow the user to �nd Components whose characteristicshad changes from one period to another, for instancedifferencev (d1; d2) = dT = f O1 gindicates that only Disk1 had some change from version d1 to d2.Example 9. Assume that now the user wants to consider the evolution of each Component.This requires �rst applying the
atten operator on the database versions of HardwareCom-19

ponent:
atten (d1; d2; d3).Flatten returns a single database version dT , where all instances of O1, O2 and O3appear in a (
at) state. Now, the versions of each object can be combined in a new class,to provide its evolution. For instance, all versions of O1 (Disk1) can be structured into avirtual multiversion object vO1 , organized here as a list of all logical versions of O1:vO1 = (< Disk1; t1; $10; O2 >;< Disk1; t2; $20; O2 >;< Disk1; t3; $40; O8 >).To better illustrate Factor, we will now enhance the database with a new class { Manual{ whose objects are manuals which describe the components' characteristicsclass Manual type tuple(name: string,content: Text,describes: HardwareComponent,language: string)A given HardwareComponent may have several manuals in di�erent languages. Furthermore,a Component's manuals may be versioned whenever the Component is versioned. The nexttable instantiates class Manual for the three database versions fd1, d2, d3g of the runningexample of section 3.3.Version id Oid Time Name Content Describes LanguageM1 t1 Man1 Text1 O1 Frenchd1 M2 Man2 Text2 O1 PortM3 Man3 Text3 O2 FrenchM1 t2 Man1 Text1 O1 Frenchd2 M2 Man2 Text4 O1 PortM3 Man3 Text3 O2 FrenchM1 t3 Man1 Text1 O1 Frenchd3 M3 Man3 Text3 O2 FrenchM5 Man5 Text5 O3 FrenchTable 6. MANUAL Class instancesExample 10. Suppose the user wants to class manuals according to the language they arewritten in. This is similar to an OLAP cube rotation operation, along the Language axis,This can be achieved by the Factor operation as followsfactor(d1; [vd1 : Manual:language= \French00; vd2 :Manual:language= \Port00])Example 11. Factoring by language is useful when the user wants to �nd out whichcomponents are ready to be exported to which countries. In order to do this, the user mustconsider both database classes (HardwareComponent and Manual) into a single operation.The following expression will factor database version d1 grouping components and manuals,according to the language:factor(d1; [vda : Manual:language= \French00 ^ Component = Manual:describes;vdb : Manual:language= \Port00 ^ Component = Manual:describes])20

Since now each database version contains HardwareComponents and Manuals, a Factoroperator applied to database version d1 would give origin to two virtual database versions:vda = f HardwareComp = fO1, O2g, Manual = fM1, M3g gvdb = f HardwareComp = fO1g, Manual = fM2g ge.g, the virtual database version vda contains components O1 and O2 and their respectivemanuals M1 and M3, which are written in language \French". Notice this has not changedthe database schema, just reorganized the versions according to a distinct criterion, thuscorresponding to a (10) operation.We point out that, in cases like this, where more than one class is involved, there is noequivalent OLAP operation, unless the entire database (all classes together) is seen as asingle unit, with all complex objects broken down into their individual components. If one iswilling to accept this combination, then this example is similar to rotating this unit along theLanguage dimension followed by a roll-up along all attributes of the HardwareComponentclass.Example 12. Finally, consider now a more complex operation, which shows that the op-erators proposed extend beyond OLAP requirements. Suppose the user wants to reorganizeversioning according to the type of object involved, separating Components from Manuals.This requires combining two operations: a Flatten, which will place all database objects intoa single view, followed by a Factor operator which will version objects according to theirnature:factor(flatten(d1; d2; d3); [vda : d = HarwareComponent; vdb : d = Manual])As a result, virtual database version vda will contain all HardwareComponent objects throughtime, and vdb all Manual objects through time. This is a partitioning ultimately directedby types and not by values. These two versions (vda and vdb) can themselves originate newsets of database versions by application of another Factor operation:factor(vda; (vda1 : T ime = t1; vda2 : T ime = t2; vda3;T ime = t3))factor(vdb; (vdb1 : T ime = t1; vdb2 : T ime = t2; vdb3;T ime = t3))fvda1; vda2; vda3g contains only Components; fvdb1; vdb2; vdb3g is a set of database versionscontaining only Manuals. Di�erent users can work on each set separately, while their linksand original versioning semantics are still maintained by the underlying database versionmechanism.5 De�ning the virtual extension in a multiversion viewUp to now, we were concerned with multiversion view intensions. Here, we discuss viewextensions, providing means for mapping virtual objects and virtual database versions backto the original source objects and versions. This is a classical problem in object-orientedview extension management.In order to specify identi�ers of virtual multiversion objects, we borrow the concept ofreferent of [LDB97]. Referents are the means through which view objects are traced to theirorigin in the source database. Intuitively, referents are identi�ers of virtual objects.A referent is a a pair (object identi�er, class name) that allows associating a virtual21

object with the class from which it originates; in particular, it allows linking an object tomore than one class. Referents point to an object as it is seen and as it behaves in a givenclass (italics taken from [LDB97]). We use the same concept to de�ne identi�ers of logicalobjects within multiversion views,Virtual multiversion object identi�ers. We recall that a logical object is denoted by< mo; d >, where mo is the multiversion object identi�er and d is the identi�er of a databaseversion. Logical virtual objects are also de�ned in the same way, i.e, < vmo; vd >, wherevmo is the identi�er of a virtual logical multiversion object and vd is a virtual databaseversion identi�er. A virtual logical object may, however, be constructed from several sourceobjects, and thus the identi�er < vmo; vd > may become very complex, since both vmo andvd may themselves be complex identi�ers.In order to specify complex identi�ers, we again turn to [LDB97], whose complex referentsare represented by ((o1,c1), ^ : : : ^ (on,cn)), denoting that a virtual object is built from theset of source objects f (oi,ci)g. In a similar manner, virtual multiversion objects may havea complex identi�er. The expression:< vmo; vd > = < (< mo1, d1 >, : : : < mon, dj >), vd >,denotes a logical virtual object in the virtual database version vd. This logical virtual objectis constructed from source logical multiversion objects f < moi,di > g.Example 13. To illustrate this issue, consider a view containing only one virtual databaseversion, called vd1, mapped directly from source database version d3 in the HardwareCom-ponent database of section 3.3 (i.e., vd1 = d3). The mapping between each object in thisview and the source database is given by< vOi; vd1 > = << Oi; d3 >; vd1 >,where vOi denotes a virtual multiversion object. Intuitively, this denotes that virtual mul-tiversion object vOi is constructed from the source object < Oi; d3 >; and that it appearsin the virtual database version vd1.To extend this to a complex virtual object identi�er, let s=fd1 : : : djg be a set of databaseversions, mo be a multiversion object in s and consider the result of dT =
atten (d1; : : : ; dj).Each logical version of mo will appear in dT , with identi�ers constructed by<< mo, d1 >; dT >, : : : << mo, dj >, dT >,The user can next combine these versions according to new needs, as we have seen in theprevious section. In particular, as shown in Example 9, the user can combine all versions ofa given object in a list to construct historical chains, e.g.,vO1 = < (<< o1, d1 >; dT >, : : : < o1, dj >, dT >) ,dTa >22

is the complex identi�er which denotes that virtual object vO1 is constructed by selectingall logical versions of o1 which appear in the \
attened" view dT , and combining them in alist available through another view dTa.This type of stepwise creation of identi�ers allows tracking virtual objects back to theirsource. To complete this task the view mechanismmust know which operators were used. Inorder to do this, we use virtual graphs, described next, which provide a means for completelyrecreating the construction history of a multiversion view. Figure 4 presents the operatorsof section 4.2 together with their extension de�nition in terms of identi�ers.Virtual graphs - tracking version semantics Virtual graphs record the sequence ofsteps performed in order to create the version semantics part of the intension of multiver-sion views == i.e., for views of type (10) or (11). In this sense, these graphs serve thesame purpose as, for instance, query graphs in database language representation. From animplementation point of view, these graphs allow keeping track of version and logical objectidenti�ers, and thus ensure the mapping between a virtual object id and its source objectidenti�ers.A virtual graph is a directed acyclic graph whose nodes are logical database versions. Adirected edge (da,db) in a virtual graph denotes that da is one of the source database versionsused to construct db. Node labels specify the (10) intension operation used to constructthe corresponding database version, and allow uniquely determining how the correspondingdatabase version identi�er is to be computed. Intermediate database version identi�ers maybe attached as tags to each node.Figure 5 shows an example of the graph that builds a temporary multiversion databasefrom a set of database versions S = fd1 : : : d3g. Node vd1 identi�es an intermediate operation:vd1 =
atten (d1; d2; d3). Database versions da and db have been created by applying a factoroperator to dv1. This �gure, in fact, graphically reproduces the operations performed in thebeginning of Example 12.
d1 d2 d3

vd1 Flatten

Factorvda vdb

Figure 5: Virtual graphThe function sourceDv determines the identi�er of the source database version whichmust be considered. This function is polymorphic; as a result, it is de�ned for each operatorand for a sequence of operators. Let sequence = x1 �1 x2 : : : xn where xi may be a databaseversion or a set of database versions and �i the operators previously de�ned. The function23

sourceDv is speci�ed in Figure 6.dv identi�er resulting of operators on set of ds8 � 2 fdifference; uniong,sourceDv(�(s1; s2)) = f sourceDv(di) j di 2 (s1; s2)gsourceDv(element(fdvg))= sourceDv(dv)dv identi�er resulting of operators on dssourceDv(dv) = dv8 � 2 fintersectv; differencev; unionvg, sourceDv(�(d1; d2)) = sourceDv(d1)sourceDv(
atten(s))= _i 2 [1:::n] sourceDv(di) j di 2 ssourceDv(factor(dv,[cr1 : expr1; : : : ; crp : exprp])= sourceDv(dv)Figure 6: Retrieving identi�ers of source database versionsConstruction of view extensions View extensions are constructed by queries, as is thestandard practice for all view mechanisms. In our case, these queries can be posed usingVQL [Abd97], extended with the operations de�ned in this paper.Managing view extensions require the de�nition of virtual oids{ i.e., to allow users tomanipulate virtual objects. Virtual identi�er construction is achieved by combining thenotion of referent (complex multiversion object identi�er) to the virtual graph and sourceDvoperator.Example 14. Consider the graph of �gure 5. The �gure stands for Example 12, whichrecon�gured the original database to provide views where data are versioned along two axes:Components and Manuals. We recall this example refers to the expressionfactor(flatten(d1; d2; d3); [vda : d = HarwareComponent; vdb : d = Manual])Let us just consider objects O1 and M1, and keep track of their evolution. These objects �rstgo through a
atten operation which will make them visible in a virtual database versionvd1, with identi�ers vOi1 = f < (O1,di), vd1 > g, i.e.f < (O1,d1), vd1 >, < (O1, d2), vd1 >, < (O1, d3) , vd1 > gAnalogously, the several logical versions of M1 appear in virtual objects vMi1, i.e.,f < (M1,d1), vd1 >, < (M1, d2), vd1 >, < (M1, d3) , vd1 > gNext, virtual database version vd1 is factored into two virtual database versions vda andvdb. Objects vOi1 will be the sources of virtual multiversion objects in vda, and vMi1 willbe the sources of virtual multiversion objects in vdb. Logical object versions in vda and vdbare identi�ed by < vOi1, vda > and < vMi1, vdb >, e.g.,24

MyObject = (< (O1,d1), vd1 >, vda) identi�es a virtual object constructed starting fromthe logical version of O1 in d1, applying some operation that allows it to appear in virtualdatabase version vd1 and �nally appear by some other transformation in vda. The identi�-cation of which operations were applied is recorded in the graph and the source objects arefound out by sourceDv.Thus, given the virtual multiversion identi�er MyObject, in vda, its source objects canbe traced back to the original database by traversing the graph in reverse order, usingsourceDv, applied to the complex virtual identi�er of MyObject.6 Implementation IssuesThis section presents an architecture for implementing multiversion views in a general con-text, and describes the present implementation stage of a prototype which specializes thisarchitecture for a speci�c database system. The general architecture, shown in Figure 7,is based on the Java Database Binding tools [BST98] developed by Ardent Software. Wejust give enough details in order to show the implementation context. For a more detaileddescription of this architecture, see [BC00].The goal of the Java Database Binding tools is to provide Java with persistent capabilitiesusing the O2 DBMS [BDK92] or any relational DBMS. These tools already allow a limitedform of view speci�cation, since they permit schema restructuration by attribute hiding. Ourprototype is based on this same architecture, but simplifying some of its details. In order toimplement multiversion views using this architecture, the modules represented in shadowedboxes should be implemented. Multiversion views are thus de�ned in terms of Java classes,on top of any database management system, where instances are mapped to underlyingdatabase classes and objects. A multiversion view is therefore manipulated throughout Javainterfaces, and all code is translated into database queries via the Mapping blocks of thearchitecture.The architecture is composed of three main blocks: the Development Environment, whichallows users to specify multiversion views and translates user requests into DBMS requestsand vice-versa; the Runtime block, which is DBMS-independent and provides all the servicesneeded to implement ODMG interfaces; and the Database Connectivity facilities, whichallows access to di�erent database management systems.Data
ow in the architecture is indicated by the arrows. Users' speci�cation of mul-tiversion views are preprocessed, compiled in Java and next mapped to a speci�cation ofunderlying database classes and objects by the Mapping tools. Once this mapping is per-formed, the resulting code is handed to the Bytecode processing, which adds interfaces andmethods required to read and write objects to/from the DBMS in terms of Java bytecode.At runtime, all is handled by Java applications which are enhanced with postprocessedJava classes. The management of identi�ers of virtual multiversion objects is done at thisstage. The Virtual multiversion object cache is where database objects are initially retrieved,together with their identi�ers. This cache binds Java objects to database objects, using themultiversion referents mapping mechanism described in section 5.The central component of the architecture is the set of Mapping tools, which map com-piled Java classes into the underlying DBMS, according to prede�ned mapping rules and as-25

 Database Version Connectivity Interface

Database Connectivity Manager

Compiled Java
Classes

Java Compiler

+
Java Application

Postprocessed

Java Classes

Java Classes
Description

������
������
������
������
������

������
������
������
������
������

Version
Mapping
Manager

Bytecode Postprocessor

Schema

Generator

������
������
������

������
������
������

����������
����������
����������

����������
����������
����������

���������
���������
���������

���������
���������
���������

����������
����������
����������

����������
����������
����������

������
������
������
������
������

������
������
������
������
������

Database Connectivity

additional information

Java Binding

Runtime

Preprocessor

Database Version Manager

Development Environment Runtime

 Mapping Tools

Bytecode Generator

Multiversion Object Cache

(2)

(3)

(4) O2-Ardent with
O2Version module

View
Mapping
Manager

(1)

Figure 7: General architecture for implementing multiversion views
26

sociated metadata. These metadata describe the underlying schema (ie.e, attributes, types,inheritance links, method signatures and persistency roots). Their role is to provide themeans for transforming Java classes (which are our virtual multiversion view classes) intothe physical database. Once this mapping is established, the new classes are transformedinto Java bytecode and passed on to applications which will use the view.The access to the database is performed in three steps. First the Mapping managertransforms a user or application request into a DBMS operation; next, the Mapping man-ager creates database queries according to the mapping metadata; �nally, the Databaseconnectivity block sends these queries to the DBMS and returns the result to the Runtimecache block.The implementation of our prototype, in construction, is centered in the boxes numbered(1) through (3) in the �gure. First, it is not geared towards a general database environment;instead, it uses the O2-Ardent DBMS, which implements a version mechanism based onthe Database Version mechanism of [CJ90], in a module called O2Version [O2-98]. Thus,we do not need to implement the Database Version Manager block of the �gure, since it isalready available in this commercial product. As a consequence, the bottom block (DatabaseConnectivity) is replaced in our prototype by O2-Ardent, as indicated by number (4) in the�gure. In the second place, we do not provide automatic bytecode transformation; rather,the multiversion view operations of Section 4 are transformed by the Mapping tools into aset of operations which are part of the interfaces of the Java classes managed by Runtime.These interfaces are not generated automatically - i.e., there exists a speci�c code for eachmultiversion view speci�cation operation, which is handled by the View and Version mappingmanagers.The Version mapping manager translates JAVA operations on multiversion view objectsinto O2Version code. It also implements the multiversion view intension operations of section4.2.1. Queries on versions use the VQL language of [Abd97], which has been implemented ina prototype on top of O2Version [Cha99]. The View mapping manager handles the remainingintension operations.View and Version managers are kept apart in the architecture to allow handling of mul-tiversion objects by a Java application, regardless of view needs. Thus, for instance, (00)views do not activate the View mapping generator, since they are just the result of select-ing parts of the multiversion database schema, and retrieving the corresponding instances.In this case, user requests are mapped directly via the Version Mapping Manager to theunderlying O2Version module.7 Conclusions and Directions for Future WorkThis paper presented a view mechanism { the multiversion view mechanism { that allowshandling multiple versions of objects through views, thereby combining properties of versionand view mechanisms. This combination is in itself a contribution, since versions and viewshave so far been treated in isolated contexts by the database community. In several stages ofthe paper we contrasted operations on multiversion views with OLAP or temporal databases,to show the examples from a di�erent perspective. The goal was also to further motivate27

multiversion view utilization, making at the same time clear that our approach subsumesthese domains.The main advantages of the framework proposed here are:� Clear construction rules. The construction of multiversion views separates the issuesof intension and extension de�nition, thereby avoiding problems that frequently occurin view management mechanisms.� Closeness to the user's perspective. Whereas other view mechanisms force upon theusers a non-versioned perspective of the world our proposal eliminates this constraint,allowing users to construct views containing as many versions of the world as desired.This type of approach is of immediate application in several contexts: temporal databases(if versioning is restricted to time), OLAP (for relational databases, or situations where onlyone class is considered), and in cooperative design environments in general.First, since Time is a frequent versioning criterion, our framework can be seen as analternative means of handling temporal databases through views, as shown for instancein Examples 4 and 9. Nevertheless, we cover other situations not considered in temporaldatabases, since versioning can encompass attributes other than time. Moreover, severalversions of a given object can exist in a single time period (e.g., when alternatives are createdin design applications). Handling this type of situation is not possible from a temporaldatabase perspective.The concept of OLAP originates, among others, from statistical databases and statisticaltable handling. OLAP data are organized in tables, where each instance is considered to be amulti-dimensional description of a real world entity. Tables can be reorganized according toseveral criteria, and dimensions may be aggregated or broken down (i.e., providing distinctviews of the database). Transplanted to our framework, this can be performed by creatingviews through modifying versioning semantics. For instance, Example 10 is a canonical in-stance of an OLAP operation in an object oriented context. In other words, if versioningis performed along single attributes, and the database schema is relatively simple, each at-tribute can be seen, up to a certain level, as an OLAP dimension. Therefore, we believe that,if we restrain ourselves to relational databases and non-complex dimensions, our operatorscan replicate the basic needs (e.g., [Sho97] { roll-up, drill-down, rotate and select).On the other hand, as we also point out, our operations extend beyond OLAP, sincethey respond to a di�erent set of users' needs (e.g., see Examples 11 and 12). Furthermore,contrary to OLAP underlying assumptions, we allow multiple attribute hierarchies per di-mension. Handling of alternatives is yet another case which has no corresponding OLAPcounterpart, since this requires a means of linking di�erent alternatives of a single object(and can only be achieved through the versioning mechanism).The next steps in this research consist in �nishing the implementation of the prototype.Another issue to which we will dedicate attention is that of updatable multiversion views.28

AcknowledgementsThis work was developed within the binational cooperation program CNPq (Brazil) - CNRS(France). It was furthermore partially supported by Brazilian grants from CNPq andFAPESP, by PRONEX project SAI (Advanced Information Systems) of MCT-Brazil. Wethank Marie-Jos�e Blin for providing us with a real life example and careful reading of thistext.References[AB91] S. Abiteboul and A. Bonner. Objects and Views. In Proc. SIGMOD Conference,pages 238{247, 1991.[Abd97] T. Abdessalem. \Approche des versions de bases de donn�ees: repr�esentation etinterrogation des versions". PhD thesis, Universit�e Paris IX Dauphine, 1997.Supervisor, Genevieve Jomier.[AGM+97] S. Abiteboul, R. Goldman, J. McHugh, V. Vassalos, and Y. Zhuge. Viewsfor Semistructured Data. In Proc International Workshop on Management ofSemistructured Data, 1997.[BC00] M. Bellosta and W. Cellary. Consistent Versioning of Java Schemata and theirExtensions. Submitted for publication, initial version, 2000.[BDK92] F. Bancilhon, C. Delobel, and P. Kanellakis, editors. Building an Object-orientedDatabase System. Data Management Systems. Morgan Kaufmann Publishers,1992.[Ber92] E. Bertino. Data Hiding and Security in Object-Oriented Databases . In ProcIEEE Data Engineering Conference, pages 338{347, 1992.[BFK95] P. Br�eche, F. Ferrandina, and M. Kuklok. Simulation of Schema Change UsingViews. In Proc DEXA Conference, Springer Verlag Lecture Notes in ComputerScience 978, 1995.[Bla91] H. Blanken. Implementing Version Support for Complex Objects. Data andKnowledge Engineering, pages 1{25, 1991.[BLP95] M-J Blin, J. Lisicki, and I. G. Puddy. Improving Con�guration Manage-ment for Complex Open Systems. ICL Systems Journal, 10(1), 1995. Alsoat http://www.icl.com/sjournal/v10i1.[BLT86] J. Blakeley, P. Larson, and F. Tompa. E�ciently Updating Materialized Views.In Proc. ACM SIGMOD Conference, pages 66{71, 1986.29

[BM93] K. J. Byeon and D. McLeod. Towards the Uni�cation of Views and Versionsfor Object Databases. In Proceedings of International Symposium on ObjectTechniques for Advanced Software, Kanazawa, Japan, November 1993., pages220{235, Kanazawa,Japan, November 1993.[BST98] M. Bellosta, C. Souza, and E. Theroude. Mapping Relations to Java Objects.Technical report, O2-Ardent, 1998. OCBA Project D1.2.2 3GL Bindings.[BW99] D. Barbara and X. Wu. The Role of Approximations in Maintaining and UsingAggregate Views. IEEE Data Engineering Bulletin, 22(4):15{21, 1999.[Cha99] W. Chaoui-Kerkeni. Langages d'Interrogation de BD �a Versions - Etat de l'artet Mise en Oeuvre avec l'approche VBD. Master's thesis, Universit�e Paris IXDauphine, 1999.[CJ90] W. Cellary and G. Jomier. Consistency of Versions in Object-OrientedDatabases. In Proc. 16th VLDB, pages 432{441, 1990.[CK86] Hong-Tai Chou and Won Kim. A unifying framework for version control ina CAD environment. In Proc. 12th VLDB Conference, pages 336{344, Kyoto,August 1986.[DL96] A. Dattolo and V. Loia. Collaborative Version Control in a Agent-based Hyper-text Environment . Information Systems, 21(2):127{145, 1996.[FD96] E. Fontana and Y. Dennebouy. Lazy Propagation of Multiple Schema ChangesUsing TimestampedVersions . Ing�enierie des Syst�emes d'Information, 4(1):9{33,1996.[FR97] G. Fahl and T. Risch. Query Processing over Object Views of Relational Data.The VLDB Journal, 6:261{281, 1997.[FSS79] A. Furtado, K. Sevcik, and C. Santos. Permitting updates through views ofdatabases. Information Systems, 4:269{283, 1979.[GJ94] S. Gancarski and G. Jomier. Managing Entity Versions within their Contexts: aFormal Approach. In 5th International Conference,Database and Expert SystemsApplications DEXA94, pages 400{409, 1994.[Huy98] N. Huyn. Multiple View Self-maintenance in Data Warehousing Environments.In Proceedings VLDB 1998, pages 26{35, 1998.[ICL00] ICL. ICL site. http://www.icl.com, as of January 2000, 2000.[Kat90] R. H. Katz. Toward a Uni�ed Framework for Version Modelling in EngineeringDatabases. ACM Computing Surveys, 22(4):375{408, 1990.[KC88] W. Kim and H-T Chou. Versions of Schema for Object-oriented Databases. InProc. 14th VLDB Conference, pages 148{159, 1988.30

[KR97] U. Kulkani and R. Ramirez. Independently Updated Views. TKDE, 9, 1997.[KS92] W. Kafer and H. Schoning. Mapping a Version Model to a Complex-ObjectData Model . In Proc IEEE Data Engineering Conference, pages 348{357, 1992.[KSW86] P. Klahold, G. Schlageter, and W. Wilkes. A General Model for Version Man-agement in Databases. In Proc XII VLDB, pages 319{327, 1986.[LDB97] Z. Lacroix, C. Delobel, and P. Br�eche. Object Views Constructed with an ObjectAlgebra. In Proc.13e Journ�ees Bases de Donn�ees Avanc�ees, pages 219{239, 1997.[LDB98] Z. Lacroix, C. Delobel, and P. Br�eche. Object Views. Networking and Informa-tion Systems Journal, pages 231{250, 1998.[LST98] F. Llirbat, E. Simon, and D. Tombro�. Using Versions in Update Transactions:applications in Integrity Checking. In Proceedings VLDB 1998, pages 96{105,1998.[Man00] M. Manouvrier. Objets Similaires de Grande Taille dans les Bases de Donn�ees.PhD thesis, Universit�e Paris IX Dauphine (France), january 2000.[MBJ96] C. B. Medeiros, M. Bellosta, and G. Jomier. Managing Multiple Representationsof Georeferenced Elements. In IEEE, editor, Proc. 7th DEXA96 Workshop, pages364{371, 1996.[MM91] J-C. Mamou and C. B. Medeiros. Interactive Manipulation of Object-OrientedViews. In Proc International IEEE Conference Data Engineering, pages 60{69,1991.[MP96] R. Motschnig-Pitrik. Requirements and Comparison of View Mechanisms forObject-oriented Databases. Information Systems, 21(3):229{252, 1996.[Nov95] G. Novak. Creation of Views for Reuse of Software with Di�erent Data Repre-sentations. IEEE Transactions on Software Engineering, 21(12):993{1005, 1995.[O2-98] O2-Ardent, Boulder, CO. O2Version Reference Manual Rel. 5.0, February 1998.[RR97] Y. Ra and E. Rundensteiner. A Transparent Schema-evolution System Based onObject-oriented View Technology. TKDE, 9(4):600{623, 1997.[Run93] E. Rundensteiner. Design Tool Integration Using Object-Oriented DatabaseViews. In Proc IEEE Intl. Conference on Computer-aided Design, pages 104{107,1993.[SAD94] C. Santos, S. Abiteboul, and C. Delobel. Virtual Schemas and Bases. In Pro-ceedings EDBT 1994, pages 81{94, 1994.[Sci91] E. Sciore. Multidimensional Version for Object-Oriented Databases. In Proc.16th VLDB Conference, pages 355{370, 1991.31

[Sho97] A. Shoshani. OLAP and Statistical Databases: Similarities and Di�erences. InProc ACM PODS, pages 185{196, 1997.[Sno95] R. Snodgrass. Modern Database Systems: The Object Model, Interoperability,and Beyond, chapter Temporal Object-oriented Databases: a Critical Compari-son, pages 386{408. ACM Press, 1995.[TO96] G. Talens and C. Oussalah. Version d'objets pour l'ing�enierie. Technique etScience Informatiques, 15(2):145{178, 1996.[TYI88] K. Tanaka, M. Yoshikawa, and K. Ishihara. Schema virtualization in object-oriented databases. In Proc IEEE 4th Conference on Data Engineering, pages23{30, 1988.[WR94] W. Wieczerzycki and J. Rykowski. Version Support for CAD/CASE Databases.In Proceedings East/West Database Workshop, Workshops in Computing, pages249{260. Springer Verlag, 1994.[YKL98] J. Yang, K. Karlapalem, and Q. Li. Algorithms for Materialized View Design inData Warehousing Environments. In Proceedings VLDB 1998, pages 136{145,1998.[YPS95] X. Ye, C. Parent, and S. Spaccapietra. On the Speci�cation of Views in DOODSystems. In Proceedings Fourth International DOOD Conference, pages 539{550,Singapore, 1995.

32

Appendix A - Application Speci�cationThe paper uses a small example (starting in Section 3.3) to illustrate multiversion viewcreation and management. This examplewas extracted from a real case study of managementof con�guration of complex information systems. This Appendix gives an overview of thiscase study, a typical context in which multiversion views can make a di�erence. For moredetails on this system and its design see [BLP95].The application concerns the management of a system called ISS400 of the British infor-mation technology �rm ICL [ICL00]. ISS400 is a system that handles the con�guration ofsoftware and hardware for medium to large scale retail points of sale (e.g., super or hyper-markets, department stores). It is highly con�gurable, and can be adapted to all kinds ofclient that deal with retail outlets and business operations. ICL development and supportteams install and maintain at each client's site the most appropriate hardware and softwarecon�guration. This is achieved by selecting, from a large component version library, theappropriate version of each software and hardware component to customize and install atthe client's sites.The example database of this paper is extracted from the ISS400 component library.View creation examples borrow from typical needs of ICL's development and support teams.The component library consists of both hardware and software descriptions, and associateddocumentation. As well, it contains description of services that ICL teams can provide.Examples of hardware components include servers, peripherals, workstations, tills, net-works, power supply units, network cards, bar code readers, and so on. A component mayhave several subcomponents, e.g., a given till may be composed of main board, secondaryboards, keyboard, displays, printers, scanners, cables and interface black boxes. Softwarecomponents include source modules, object modules, data speci�cations and interface lookand feel de�nitions. Documentation components include external customer manuals as wellas internal speci�cation �les describing support and development tasks, such as require-ments, design blueprints and test plans. The service components include installation, sup-port, consultancy and training. Each service module requires speci�c skills and supportdocumentation.In particular, over 15,000 distinct modules are available in the library, each with ap-proximately 10 versions. Software, hardware, documentation and service components arefurthermore subject to complex dependencies which link program versions to hardware,documentation and services, de�ning valid con�gurations thereof.A complex con�guration may include, for instance, hardware, the operating system en-vironment, applications, peripherals, cabling, interfaces etc. all of which interact. Anycomponent may be versioned according to its temporal technological evolution, to customervariants and to the business processes it is designed to support and work with. The def-inition of a con�guration for a given client is equivalent to the de�nition of either a (00)view or a (01) view containing only one version of each object (i.e., one particular version ofeach relevant component is picked out). However, con�guration creation may require severaloperations on all kinds of multiversion views.Since ICL has clients in over 40 countries, and a client may operate in many countries,this has an impact on con�guration management. For instance, a given supermarked chainmay require several types of tills (e.g., for distinct shops or countries), and therefore distinct33

con�gurations (e.g., software and manual in several languages according to the country).See, in particular, examples numbered 9 onwards in the text for typical con�guration man-agement requests. Development and installation teams must thus respond to two challenges- environment evolution due to changes or hardware/software error corrections.Components have several versions related to their history, and several variants related tothe language, country market or customer speci�c requirements. Minor changes in a versiongenerate so-called releases. Each component is identi�ed by internal ICL codes, which alsodetermine its version (similar to multiversion object identi�ers) - e.g., TA IT 10.0 is theinitial version of a till application, further releases are identi�ed by TA IT 10.1, TA IT 10.2and so on. Consider for instance till application TA IT 10.0. It runs on point of sale9520/150R3, which contains among others the components \CPU board R3" and \Pin padDassault LCM 103". It may also run on point of sale 9520/150R4, which di�ers from theprevious point of sale by using \CPU board R4". The till application uses version 3.1 ofsoftware \FORTE", which runs on either R3 or R4 CPU boards.In order to minimize the number of parameters to be handled during con�guration spec-i�cation, ISS400 is structured in four layers { hardware, operating system, base softwareand application programs. Each layer is handled by a distinct ICL team. To create a newsystem version for a customer, each team creates a version of a related speci�c part of thesystem either by reuse, selection and customization of existing component versions or bydevelopment of new component versions. Each of these parts is veri�ed in unit tests, fol-lowed by integration and validation before installation. Test documentation is integrated tothis con�guration. The set of steps previous to and during the installation procedure arealso subject to constraints of team member expertise and availability (who can do what,where and when). Again, assigning a team to a task can be simpli�ed by creating speci�cmultiversion views that involve people, constraints and con�gurations.The modeling of ISS400 according to the database version model can be seen in [BLP95].To �nish this abridged description of the system, we include a few hardware, software andcon�guration constraints, which show further need for multiversion views:� if a con�guration contains a check reader of a pin pad, then it must also contain anetwork card X25;� a hardware integration con�guration must include two servers and at least one till anda hub;� version 3.1 of FORTE software has been conceived to be installed together with eitherR3 or R4 CPU boards;� program TCF must be installed in version AU33 NDBoard3 if the installation has anNCR scanner, a Dassault pin board, a 1200 baud Dassault card reader and no F1keyboard;� con�guration AU 04 V1L5.7A is compatible with the following: (a) FX486/50 proces-sors, french VGA screen, 2 425MB disks, 32MB RAM; (b)9520/150 family point ofsale tills work with an AU keyboard, cash drawer, RS232 printer interfaces; (c) etc ...34

