
Aondê: An Ontology Web Service for Interoperability across
Biodiversity Applications

Jaudete Daltio, Claudia Bauzer Medeiros

1Institute of Computing - State University of Campinas (UNICAMP)
CP 6176 13084-971 Campinas, SP - Brazil

jaudete@gmail.com, cmbm@ic.unicamp.br

Abstract. Biodiversity research requires associating data about living beings
and their habitats, constructing sophisticated models andcorrelating all kinds
of information. Data handled are inherently heterogeneous, being provided by
distinct (and distributed) research groups, which collect these data using dif-
ferent vocabularies, assumptions, methodologies and goals, and under vary-
ing spatio-temporal frames. Ontologies are being adopted as one of the means
to alleviate these heterogeneity problems, thus helping cooperation among re-
searchers. While ontology toolkits offer a wide range of operations, they are
self-contained and cannot be accessed by external applications. Thus, the many
proposals for adopting ontologies to enhance interoperability in application de-
velopment are either based on the use of ontology servers or of ontology frame-
works. The latter support many functions, but impose application recoding
whenever ontologies change, whereas the first supports ontology evolution, but
for a limited set of functions.
This paper presents Aondê – a Web service geared towards the biodiversity
domain that combines the advantages of frameworks and servers, supporting
ontology sharing and management on the Web. By clearly separating storage
concerns from semantic issues, the service provides independence between on-
tology evolution and the applications that need them. The service provides a
wide range of basic operations to create, store, manage, analyze and integrate
multiple ontologies. These operations can be repeatedly invoked by client ap-
plications to construct more complex manipulations. Aondê has been validated
for real biodiversity case studies.

Keyword: Ontology Management, Web Services, Biodiversity Information Sys-
tem, Semantic Integration.

1. Introduction

Biodiversity research is a multidisciplinary field that requires cooperation of many kinds
of scientists that collect, correlate and analyze data on living beings and their habitats,
and construct models to describe species’ interactions. Available data are collected all
over the world by distinct teams and published in many formats, following a variety of
standards. This scenario is characterized by its intrinsicheterogeneity – not only of data
and models, but also of requirements and profiles of the experts who collect and analyze
the data. Data volume and species diversity contribute to complicate the issue: while
roughly 2 million species have been identified, estimates for the number of species in the
world vary from 10 million to more than 100 million [27].



In order to advance their knowledge of the world, scientistsrequire means to sup-
port cooperation among research groups. Therefore, sophisticated mechanisms for data
storage, management, sharing and retrieval are required tomanage the huge amount of
data produced, and their integration, correlation, fusionand interpretation. One addi-
tional issue is temporal heterogeneity. Not only do ecosystems evolve; ecological models
and species’ taxonomic classifications also change, reflecting the evolution of scientific
knowledge about the real world. Hence, interoperability and manipulation of heteroge-
neous data is one of the major challenges faced by these scientists.

Biodiversity Information Systems (BIS) [53] provide partialsolutions to some
of these problems, publishing data sets and providing functions that allow analysis of
species and their interactions. Queries in BIS typically combine textual data on species to
geographical data (characterizing the ecosystems where the species are observed).Occur-
rence records(also calledcollection records) are one of the most important data sources.
They describe observations of living beings (when and wherethey are observed, by whom
and how). In spite of providing scientists with sophisticated analysis functions, BIS re-
quire data and model standardization, and interoperability across BIS is still an open
problem.

The use of ontologies has been pointed out as a means to solve some of the above
problems. Ontologies are descriptions of an abstract modelof terms, related among them-
selves [26]. They model portions of a domain: its entities, relations and constraints, aim-
ing to define a common agreement on that domain.

Several domains in biology already provide consensual ontologies – e.g., in bioin-
formatics, the Gene Ontology [9], or the TAMBIS Ontology [10]. In biodiversity, how-
ever, there are too many kinds of expertise involved, and consensual structures do not yet
exist. A few multinational projects have been started to construct such ontologies – e.g.,
GBIF [23] – but they are still in their infancy.

In spite of the extensive research conducted on the use of ontologies to help inter-
operability and support cooperation across research groups, there is still much to be done.
While there exist sophisticated toolkits to create and manage ontologies, they do not al-
low external access by client applications. Thus, in order to ensure ontology sharing and
management across groups, application developers have to resort either to development
environments to construct applications that use consolidated ontologies, or to create pro-
grams that invoke operations from servers that publish specific ontologies. The first kind
of solution does not support ontology evolution, whereas the second limits application
flexibility by providing a restricted set of access functions, with no possibility of handling
multiple ontologies simultaneously. Moreover, in most cases there is not a clear separa-
tion between storage concerns and semantic manipulation, hampering ontology reuse and
application development. Additionally, most approaches do not provide metadata on on-
tologies. Thus, applications (and users) are unable to determine factors such as ontology
quality, or reliability.

This paper presents a SOAP-compliant Web Service, named Aondê1, which meets
these requirements. As will be seen, it combines the facilities provided by environments

1Aondê means ”owl” in Tupi, the main branch of native Brazilian languages, denoting both the domain supported
by the service, and the standard ontology language used by its implementation.



with the flexibility offered by servers to support ontology evolution. Moreover, it clearly
separates storage management issues from high level ontological operations. The param-
eters of its basic set of functions can be dynamically definedby client applications, to
query, search, rank, compare and integrate ontologies. Finally, Aond̂e allows access to
multiple ontologies at a time, as long as they are published using Web Services. Ontology
management is enhanced by associated metadata structures,thus fostering collaborative
management of ontologies.

Aondê was designed and implemented to meet the needs of WeBios [57], a BIS
being developed within a joint initiative of biodiversity and computer science researchers
at the University of Campinas – UNICAMP – Brazil. The goal of WeBios is to provide
scientists with a system that supports sharing of distributed biodiversity data sources on
the Web. Though geared towards biodiversity applications,Aondê has been specified in a
generic way, so that it can be extended and adopted by other kinds of application domains
with similar volume and interoperability requirements.

This paper contributes therefore to the solution of problems of semantic hetero-
geneity in the Web, by presenting an ontology Web Service characterized by: (1) use
of distributed repositories to manage and store ontologiesand their metadata, separating
low-level storage from higher level semantic concerns; and(2) specification and imple-
mentation of service operations that support integrated manipulation of sets of ontologies.
Applications can thus enhance their semantics, and interoperate by becoming clients of
this service, thereby exchanging, reusing, integrating and adopting concepts from ontolo-
gies published on the Web.

The rest of this paper is organized as follows. Section 2 contains a brief description
of WeBios. Related work is described in section 3. Section 4 presents the specification of
Aondê and its architecture. Section 5 concerns implementation aspects. A real case study
is presented in section 6. Finally, section 7 concludes the paper, commenting on lessons
learnt and ongoing work.

2. Overview of WeBios’ Architecture

This section briefly presents WeBios, to show the principles behind the design of Aond̂e,
while at the same time illustrating a typical context where this service can be used. We-
Bios is a biodiversity information system developed within ajoint initiative of computer
science and biodiversity researchers. Its goal is to provide the latter with a system that
supports exploratory queries over heterogeneous and distributed biodiversity data sources
on the Web. It has a service-oriented architecture and employs Semantic Web technolo-
gies.

Figure 1 presents a high-level view of WeBios’ architecture,organized according
to four main layers:Storage Layer Services, Supporting Web Services, Enhanced Web
ServicesandClient Applications. This paper is concerned with the two outlined boxes:
the Aond̂e Ontology Service and the Semantic Repositories Service.

While some services are already implemented, others are still being designed. The
architecture shows the basic data and software organization that underlies our work. First,
distinct kinds of data sources are published via Web Services. Second, services grow in
complexity via their composition. Finally, applications can invoke services whenever they



need specific kinds of data and functions on these data. Consequently, the architecture
supports interoperability on the Web and flexibility in application development.

Figure 1. The WeBios Architecture - Main Components

Intuitively, a query at theWeb Interfacelevel is translated into a set of requests by
theQuery Mediator. These requests are dispatched to appropriate services. TheEnhanced
Servicesinvoke theSupporting Servicesto answer requests that demand combined access
to distinct kinds of data sources. The Enhanced and Supporting services retrieve the
data from theStorage Layerservices, process the requests and return the results to the
Mediator, which will merge them and return the final answer tobe shown at the Interface.

The Storage Layer Servicesare responsible for data storage and low-level data
management in distributed repositories, which are fed by distinct biodiversity research
projects. There are four kinds of primary data sources: images (Image Repositories),
species’ occurrence records (Collection Repositories), geographical and ecological data
(Geo Repositories), and ontologies (Semantic Repositories).

Each of these sources has associated metadata.Ontology dataare provided by the
scientists to describe their work context, e.g., phylogenetic trees, taxonomic descriptions,
ecological relations or habitat definition. Though figure 1 shows one single repository of
each kind, several such repositories can exist, e.g., managed by distinct research projects,
scientists or institutions.

The Supporting Services Layer comprises five Web Services, each of which ded-
icated to a specific data retrieval modality. TheContent-based Image Retrieval Service
processes requests based on image content. TheMetadata Serviceretrieves information
based on metadata parameters, allowing for different standards. TheCollection Service
provides access to occurrence records. TheGeographic Data Serviceretrieves spatial
information, used to create maps and species distribution in a given area. TheAond̂e
Ontology Service is described in Sections 4 and 5.



So far, two Enhanced Services have been designed and partially implemented: Im-
age Annotation and Ecologically-aware Queries. TheImage Annotationservice [22] helps
users to annotate images with metadata and ontology terms. The Ecologically-aware
query service [25, 31] allows users to pose queries on ecological relationships among
species (e.g., predator-prey). Most of theStorage Layer Serviceshave been implemented
as prototypes, using a DBMS, but not as full-fledged Web services. OnlyAond̂e, the
Semantic Repositoryand theGeographic Data Serviceare implemented as Web services.

Our case study (Section 6) relies on taking advantage of the independence offered
by service invocation. Complex data manipulations within anapplication are supported
through sequences of invocations to distinct services. Ontology repositories are central to
semantic disambiguation of queries and are detailed in Section 5.1. Aond̂e is detailed in
Sections 5 and 4.Further details on WeBios are outside the scope of this paper.

3. Related Work

Our paper concerns ontology management, including studieson tools and operations.
Though Aond̂e has been constructed for biodiversity information systems (BIS), it was
specified and implemented in a general way. Thus, we will not discuss related work
on BIS, just inserting appropriate explanations when needed. For the purpose of this
paper, it suffices to know that all BIS rely on correlating ecological and geographic data,
information on species and species collection records. Moreover, they can be specialized
– i.e., concerning one specific kind of living being [29, 51] –or general purpose, covering
a wide range of species (e.g., [50]). WeBios’ design supportsthe latter.

3.1. Ontologies and Tools to Manipulate them

One of the most widely used definitions of ontology is [26]:“an ontology is an explicit
specification of a conceptualization”. From a computer science perspective, an ontology
can be viewed as a data model that represents a set of conceptswithin a domain and the
relationships between those concepts. Knowledge in an ontology is formalized using four
kinds of components:

• Classes:sets, or kinds of objects (concepts or categories of concepts in the do-
main), usually organized in taxonomies;

• Instances:the objects in the domain, represented as instances of a class;
• Properties: used to describe instances/classes. Properties may express object

attributes or relationships;
• Constraints: abstractions that use properties to describe a class.

Many languages may be used to represent an ontology, such as RDF (Resource
Description Framework) [36] and OWL (Web Ontology Language)[8]. Ontologies are
usually displayed using graphs – nodes are classes, terminal nodes are instances, and
edges represent properties, class hierarchies or relations between instances of classes.
Constraints are expressed as axioms in description logic andare not represented graphi-
cally. Tools and languages for ontologies also take advantage of the graph structure.

Though ontologies help interoperability, they impose a newkind of burden on
systems (and people) – how to define the ontologies of interest and, moreover, to specify
how they should be managed. In many application domains, experts construct the on-
tologies using toolkits, often importing and reusing existing structures. Reuse is fostered



by publishing ontology repositories on the Web – e.g., DOME [16], OntoServer [55] or
Swoogle [17].

There are many tools to manipulate ontologies, with varyingnumber of func-
tionalities, such as ontology development, merge, evaluation, annotation, storage and
querying. The most popular tools are Protéǵe, WebODE, OilEd, Ontolingua and Onto-
Builder [24, 44]. Though many of these tools similar functions, they neither interoperate
nor cover all the activities of the ontology life cycle. Thislack of interoperability causes
significant problems when integrating an ontology into the ontology library of a differ-
ent tool, or if two ontologies built using different tools orlanguages are integrated using
merging tools. This, in turn, prompted research on tools that process and allow compar-
ison of ontologies specified in different languages – e.g., [58]. As will be seen, Aond̂e
supports the most common functions offered by toolkits, assuming language homogeneity
(the OWL standard).

3.2. Ontology Servers and Frameworks

Toolkits are self-contained and their operations cannot beaccessed from external appli-
cations. Thus, to effectively share ontologies across applications, software engineers rely
on two kinds of solution: ontology frameworks and ontology servers.

Examples of frameworks are Jena [14], SNOBASE [34] and SOFA2. Usually, such
frameworks provide functions to access ontologies that have been stored in distinct for-
mats (such as DAML+OIL, RDF, RDF(S), or OWL), using specific query languages.

Application development in this context uses a framework’sfunctions and data
structures. In many cases, however, frameworks do not support the development of ap-
plications that consider ontology evolution. Indeed, since ontologies describe knowledge
about a given domain, they must evolve to reflect knowledge acquisition – e.g., in bio-
diversity, when new species are found or taxonomies are revisited. Since the application
code depends on the framework’s (static) structures, ontology evolution may demand con-
siderable recoding. This defeats the purpose of using ontologies to provide flexibility and
interoperability across applications.

Hence, ontology servers have been proposed to solve the needfor dynamic man-
agement [19, 35, 52]. Servers are mostly concerned with handling storage issues. Some of
these servers provide access to the ontologies via their URIs– e.g., [19], while others store
the ontologies in a local repository – e.g., [35]. These servers can only provide access to
an ontology at a time, and thus are not appropriate to work in distributed, multi-ontology,
scenarios. Moreover, they offer a limited range of functions on ontologies – some may
support queries to ontologies and, in some cases, provide inference engines.

Aondê combines the use of servers (for dynamic ontology management) to frame-
works (to support flexibility in application development).The following sections briefly
describe some of the ontology functions that have been proposed in the literature, as well
as toolkits that have been developed to deal with them, indicating some of our design
choices. As will be seen, there is no solution that covers allneeds. Moreover, some of
these functionalities are not yet available in a Web implementation. Aond̂e fills this gap,
providing web based support to the most common functions.

2http://sofa.dev.java.net



3.3. Ontology Ranking

The goal of ranking mechanisms is to determine ontologies that are potentially relevant
to a given knowledge domain. Some mechanisms use metrics that consider the number of
links and references among ontologies, similar to the notion of page-ranking on the Web.
This solution suffers from limitations, since available ontologies seldom point at each
other, having low inter-connectivity. Another solution toranking is to analyze the internal
structure of an ontology. This approach is based on metrics that evaluate how an ontology
represents the concepts of interest, considering its classhierarchies and properties.

Figure 3.3 synthesizes the main features of ranking tools Swoogle [17], AkTiveR-
ank [3] and OntoKhoj [43]. It shows, for instance, that AkTiveRank uses structural anal-
ysis, while the other two adopt reference count.

Figure 2. Comparative table of ontology ranking tools - shaded boxe s indicate our design
and implementation options

3.4. Computing Differences between Ontologies

Difference computation, in most cases, compares two versions of the same ontology. In
the more general case, distinct ontologies can be compared.Simple differences are those
that do not consider an ontology’s structure – i.e., concerning only names of classes or
properties, data types and constraints. Complex differences include detecting modifica-
tion of class hierarchies (e.g., when a class changes place in a hierarchy, denoting its
semantics have changed).

There are several tools that handle difference computation, automatically or semi-
automatically (i.e., with or without user interaction). Figure 3.4 compares a few aspects of
tools PromptDiff [39] and OntoDiff [54]. It shows, for instance, that PromptDiff compares
structures and hierarchies, but does not take ontology instances into account. Shaded
boxes indicate the design and implementation options adopted by Aond̂e.

3.5. Ontology Views

Ontology reuse is a highly recommended practice when creating a new ontology. Reuse
provides several advantages, such as avoiding the hard workof building an ontology from
scratch. Furthermore, existing ontologies are supposed tobe sounder, since they will
have undergone checking by domain experts and tested by other applications. Finally,
reuse fosters data integration and interoperability amongapplications that use the same
ontology.



Figure 3. Table comparing features of tools that detect differenc es between ontologies

More often than not, however, an ontology may be too large or too complex for a
given application need – usually, applications will require only part of an ontology. How-
ever, for lack of available alternatives, application developers end up by importing entire
ontologies, which creates performance problems, both in space and processing time. This
is aggravated by the fact that ontology management and processing usually depends on
inference engines, which perform poorly on large ontologies.

A solution to this problem is to use anontology view, which is defined to be a
relevant subset of an ontology. The termview is borrowed from research on databases
– a view is a portion of a database, relevant to a given user or application, extracted
by applying a query against the database. Paraphrasing [2],for the user, the view is a
“stand-alone” database created from the original database. Similarly, an ontology view is
a “stand-alone” ontology, constructed by extracting partsof an ontology and using them
as a new ontology.

Figure 3.5 presents the main features of tools OntoPathView[30], View Lan-
guage [56], View Traversal [41] and Ontology Winnowing [4] used in view creation. The
figure shows, for instance, that approaches proposed in [30,41] are based on the notion of
central concept– a class around which the view is built and that defines which ontology
elements must be part of a view. This approach, chosen by use,is more flexible than that
of constructing views using queries.

3.6. Ontology Integration

In distributed and open systems, ontologies alone cannot solve interoperability and het-
erogeneity issues. Distinct research groups may have different interests, research goals,
use diverse computational tools and manipulate knowledge at various levels of detail and
abstraction. Thus, in order to provide group cooperation, some kind of ontology integra-
tion mechanism must be provided. Several of the heterogeneity issues considered have
already been studied in research on database integration (e.g., [11]).

Approaches to ontology integration start from two ontologieso1 ando2, and in-
clude [13, 32]:

- Mapping: preprocessing stage, identifies all concepts ino1 ando2 that are identi-



Figure 4. Comparison of view creation tools - shaded boxes indicate o ur design and im-
plementation choices.

cal, using matching techniques;
- Merge: constructs a new ontology that is based on the mappings betweeno1 and
o2, merging equivalent concepts into a new concept. This concept receives the
name of the originating concept ino1 or in o2;

- Alignment: constructs a new ontology that embeds and preserves the original
ontologies, which are linked according to the mappings detected.

Integration is always based on some sort of matching process. Matching may
identify identical terms (equivalence), or elements that participate in relationships (e.g.,
part-of, is-a). According to [49], there are two main classifications of matching tech-
niques: element-level matching and structure-level matching. The first computes similar-
ity among terms ignoring their relationships with other terms (e.g., using string matching
or linguistic relationship among the terms compared). The second considers that an on-
tology is a graph structure, and analyzes how an entity appears in this structure [1, 46].
Aondê combines both techniques.

Figure 5 synthesizes a comparative analysis of relevant characteristics of integra-
tion tools GLUE [18], Chimaera [38], ODEMerge [47], PROMPT [40] and CATO [20].
Most of these tools are coupled to toolkits, such as Protéǵe (PROMPT) or Ontolingua
(Chimaera). Automatic processing tools may generate incorrect mappings, while inter-
active processing may impose on the user the burden of manually checking all suggested
mappings. All of these tools only match elements of the same kind, i.e., classes with
classes, properties with properties, and instances with instances. As will be seen, we have
designed and implemented an integration (alignment) module that permits another kind
of matching: classes with instances.

4. The Aond̂e Ontology Service

The goal of the Aond̂e Ontology Service is to provide to client applications facilities to
invoke a wide range of operations on ontologies. It was implemented as a Web service,
thereby providing interoperability.

Web services are self-describing and modular business applications that provide
business logic as services over the internet through standards-based interfaces and inter-
net protocols (e.g. HTTP), with the purpose of finding, subscribing and invoking those
services [7]. Standards adopted in their specification and implementation include XML,



Figure 5. Comparison of some ontology integration tools

SOAP (Simple Object Access Protocol), WSDL (Web Services Description Language)
and UDDI (Universal Description, Discovery and Integration). Web services facilitate the
communication between distinct applications and platforms.

4.1. A two-level Web service architecture

Our ontology management architecture distinguishes between ontology persistence is-
sues and semantic manipulation. Figure 6 shows this basic architecture, expanding the
boxes that were outlined in Figure 1. Ontologies are stored in several distributed ontol-
ogy repositories, each of which accessed via a Web service (WS). These repositories can
be of two kinds:Semantic Repositories, built and managed by our Semantic Repository
services, and third partyExternal Ontology Repositoriesthat publish ontology data via
Web services. Aond̂e provides an extensible set of modules that can be invoked byclient
applications to search, rank, query, integrate, create views and compare ontologies.

Figure 6. Two-tier architecture for managing ontologies, separat ing the persistence layer
from the semantic operations of Aond ê

Client applications can either request these high-level operations from Aond̂e, or
directly access the Semantic Repositories using their service interfaces (e.g., allowing
expert data curators to validate or update ontologies and their metadata). The sections



that follow describe the operations provided by Aondê (Section 4.2) and the Semantic
Repository Service persistence facilities (Section 4.3).

4.2. Operations offered by Aond̂e

Aondê is organized in the following modules:Management of Ontologies(Section 4.2.1),
Search and Ranking(Section 4.2.2),Query(Section 4.2.3),Views(Section 4.2.4),Integra-
tion (Section 4.2.5) andDifferences Detection(Section 4.2.6). This choice of functions
was based on our study of ontology tools, frameworks and services (Section 3), and of
several biodiversity systems (e.g. SinBiota [50], Spire [42] or GBIF [23]). This was
complemented by a process of requirements elicitation conducted with the biologists that
work in WeBios.

4.2.1. Management of Ontologies Module

This module is responsible for in-memory management of ontologies. It mediates re-
quests from the other modules to the persistence services, and vice versa – i.e., issuing
requests to insert/delete/replace/retrieve ontologies and their metadata, as well as addi-
tional information (see Section 4.3). Ontologies obtainedfrom the repositories (either
from Semantic Repositories or third party External Repositories) are transformed by this
module into in-memory structures, to be processed by Aondê’s other modules.

This module is also responsible for constructing metadata structures for ontologies
created by Aond̂e or retrieved from third party repositories. Each metadatastructure is
associated with an ontology through its identifier; an ontology and its metadata structure
are stored together.

A Semantic Repository may contain several ontologies and their metadata. Each
ontology has a unique (local) identifier within a repository, but a given ontology (and thus
its metadata structure) may be stored in more than one Semantic Repository. This hap-
pens, for instance, when distinct semantic repositories are managed by different research
groups. For this reason, unique identification requires thepair <identifier, URLRep>,
which denotes theidentifierof an ontology in repository addressed byURLRep. The term
idOntology, used in the rest of the paper, designates this pair, whereasidentifierwill refer
to a local id.

4.2.2. Search and Ranking Module

This module searches, within a set of source repositories, for ontologies that contain cer-
tain terms. It returns a set of ontologies that have classes or instances whose names match
(exactly or partially) these terms. The search is performedon repositories designated by
the invocation. If the search returns an ontology that is stored in third party repositories,
Aondê processes it and stores it into a target Semantic Repository.

There are two kinds of search operation: with and without ranking. Search without
ranking is performed to retrieve a single ontology in a specific repository, returning the
idOntology of the first ontology found containing the terms provided. There are two
source options: generic ontologies, or taxonomic ontologies in biology, respectively:



Search(term, sourceRep, targetRep) and

SearchTaxon(taxon, {directive}, sourceRep, targetRep),

whereterm is the name searched for (andtaxon a scientific species name). The
field sourceRep denotes the source repository indicated by the client application and
targetRep designates the Semantic Repository where ontologies retrieved from third
party external repositories are to be stored.

The search on a taxonomic ontology may return just part of an ontology –
{directive} specifies which elements will be included in the result. Thiskind of search
helps applications discover taxonomic relationships among species when the source
repository contains taxonomic classifications. Directiveoptions can beancestors, sib-
lings anddescendants.

An invocation of a search with ranking has the form:

SearchRank({term}, {weight}, {sourceRep}, targetRep),

where{term} represents the set of ontology terms passed as search parameters,
and{weight} indicates the set of weights for ranking metrics. This invocation returns a
set ofidOntology values corresponding to result ontologies, ordered by ranking values.

Ranking is based on analysis of the internal structure of eachontology retrieved
by the search. This analysis applies the metrics proposed byAlani et al. [3]: centrality of
the classes, matching and density of classes and instances indicated in{term}, and the
semantic similarity among these classes. These metrics arecombined using the values in
{weight}. The sum of weights must be 1.

We adapted the metrics proposed by [3] to rank ontologies – theirs only considers
classes, whereas Aondê considers classes and instances. LetI denote a set of input terms
(classes or instances) passed as search parameters, andO a set of source ontologies.

• Exact and Partial Matching: compares each term inI with each ontologyo ∈ O.
Computes the number of terms inI that exactly or partially match instances, or
names of classes, ino;

• Density: applied to each class/instancet ∈ o whose name matches a term inI.
Computes the number of subclasses, superclasses, properties and siblings oft,
when it is a class; and superclasses, properties and other instances of the same
class, whent is an instance;

• Centrality: applied to each classC ∈ o whose name matches a term inI. Com-
putes all shortest paths between all pairs of classes ino and counts how many
timesC appears in these paths. The bigger the centrality of a class in an ontology,
the higher the probability that the ontology adequately represents the concepts
concerning the class, and the richer the ontology as regardsthis class;

• Semantic Similarity: applied to pairs of classes (or terms)t1, t2 ∈ o whose names
match a term inI, returns the length of the shortest path betweent1 andt2. The
shorter this path, the more similar the corresponding concepts.

4.2.3. Query Module

Given a source ontology and a query expressed in an ontology query language, this mod-
ule returns the query result in the format requested. Its invocation has the form:



Query(idOntology, language, queryString, inference, outFormat),

where idOntologydenotes the ontology to be queried (i.e., the pair<identifier,
URLRep> – see 4.1) andoutFormatdefines the output format for queries: it can be textual
(i.e., in RDF triples or parts thereof) or structured in XML files.

Field languageis the query language used to specify the query stated inqueryS-
tring. This module allows queries in RDQL [48] or SPARQL [45] languages. Both
RDQL and SPARQL query an RDF representation of an ontology, manipulating it as sets
of subject–predicate–objecttriples. A query consists in selecting which ontology triples
satisfy the query predicates.

The inference parameter is a boolean variable that indicates whether the query
should be executed on the source ontology, or on an extended ontology derived from it
using inference mechanisms. Inference mechanisms supportdiscovery of new ontological
facts. Hence, queries with inference would normally returnmore results that are mean-
ingful. However, they are more costly (in processing time) than normal queries. For this
reason, inference is optional, defined at invocation time.

4.2.4. View Module

This module constructs a view of a source ontology, based on the central concept ap-
proach [41] – see Section 3.5 – and stores the view in a target Semantic Repository. The
original central concept proposal of [41] constructs viewsusing instances and properties
of the source ontology. We extended this approach to manipulate class axioms. The
module returns the identifier of the ontology view. An invocation of this module has the
form:

V iew(idOntology, concept, {directive}, targetRep),

whereidOntology denotes the source ontology, andconcept is the name of the
class that represents the central concept of the view. The view is stored in Semantic
RepositorytargetRep.

Thedirective field indicates the elements to incorporate into the view: instances,
axioms or property names. These properties can be a subclass, a superclass, an object
type or a data type. Besides the class that represents the central concept, classes related
with it through axioms or properties are also included in theview. Each property name
in a directive is associated with a non-negative integer that specifies its depth (how many
levels of indirection must be inserted in the view). A request without directives produces
a view containing everything associated to the central concept, with unlimited depth.

4.2.5. Integration Module

This module integrates two source ontologies, and producesa new ontology that is stored
in a target Semantic Repository. It returns theidOntology of the new ontology. Align-
ment is the integration approach chosen (see Section 3.6), since it is expected that almost
all of the ontologies required by a biodiversity client application will have complementary
or overlapping domains. Two ontologies with different coverages can be used together to



improve the description of the world. Alignment can also translate facts between on-
tologies with different granularities and show the same fact under distinct perspectives.
Merging (an alternative approach) does not preserve the source ontologies in the result
and is thus less adequate to our scientists.

Similarity computation is performed in two steps: first, possible mapping candi-
dates are identified using element based techniques; next, structure techniques are em-
ployed. The goal is to avoid aligning classes or instances that have similar names, but
which belong to distinct contexts in the ontologies.

Two element similarity techniques are applied: use of dictionaries (to find syn-
onyms) and the Jaro metric [15]. The maximum value obtained is multiplied byα – see
equation 1. Synonym comparison returns1 (positive) or0.

Structure similarity between two terms considers four kinds of factors: their prop-
erties, axioms, superclasses and subclasses. Each such analysis contributes with a weight
of 0.25 to structure similarity computation. Property similaritycompares the labels and
the elements related by the property (classes or primitive types). For axioms, the compari-
son is performed on properties and classes involved. Hierarchy similarity compares super
and subclasses common to the compared elements. The similarity value of each analysis
is proportional to the ratio (number of similar elements / total of elements compared) –
e.g., when comparing the superclasses of two terms, the ratio (number of similar super-
classes / total number of superclasses). It must be stressed that structures may differ for
similar elements, when ontologies have different granularities.

We define theconfidenceof a mapping between a pair of elements from different
ontologies to be computed by:

confidence = α ∗max{similarElement}+ β ∗ (similarStructure) (1)

Field{similarElement} contains the set of values obtained from similarity compu-
tation using two distinct element-based techniques, whereassimilarStructurerepresents
the similarity computed between the structures of these elements.

An invocation of the Integration module has the form:

Integration(idOntologyA, idOntologyB, α, β,minConfidence, targetRep),

whereidOntologyA and idOntologyB are the ontologies that will be aligned,
and the result is stored in Semantic RepositorytargetRep. ParameterminConfidence
– a number between0 and1 – defines a lower bound to the computation of formula 1.
The final aligned ontology will only include the alignments for which this formula yields
values aboveminConfidence

4.2.6. Differences Detection Module

This module performs a comparison between two ontologies, detecting their structural
differences (classes and properties) and content differences (instances). An invocation of
this module has the form:

Difference(idOntologyA, idOntologyB,α, β, minConfidence),



where idOntologyAand idOntologyBrepresent the ontologies to be compared.
FieldminConfidenceis computed considering element and structure similarity,using for-
mula 1. A mapping between two elements of the ontologies musthave at least this value
to be effectively considered in difference computation. Similarity computation uses the
same steps of Integration – Section 4.2.5.

The result is an XML file that enumerates these differences asthe union of three
sets: concepts that are similar in B and in A, elements that are in B but not in A and vice-
versa – see example in Section 6. We chose this kind of output because we were unable
to execute difference operations using tools available on the Web. Moreover, papers dis-
cussing ontology difference present results only graphically (e.g., crossing off eliminated
elements in an ontology graph) – see Section 3. Since Aondê must serve XML files to
client applications, we opted for this solution.

This function has important applications in biodiversity systems, especially when
ontologiesA andB are different versions of a taxonomic description. In biodiversity,
the classification of species may change over time. Moreover, classifications proposed by
distinct authors may disagree on species hierarchies. Thiscomparison allows a biologist
to detect when distinct taxonomic models were used in a givenstudy, and where the
differences lie.

4.3. Semantic Repositories Service

While the previous section concentrated on semantic manipulation of ontologies, the ra-
tionale behind the Semantic Repository Service is to providepersistence to ontologies,
and low-level ontology storage manipulation. Nowadays, a very wide range of ontologies
is available on the Web. Most times, they are published without any additional informa-
tion that might help their use. As a consequence, potential users cannot find and recognize
ontologies of interest, and thus their sharing and reuse areseriously affected. We intro-
duced metadata structures to help diminish this problem.

The Web service interface to Semantic Repositories thus supports extraction, in-
sertion, deletion and replacement operations on ontologies and associated metadata. Its
operations and structures extend facilities provided by ontology servers.

A Semantic Repository contains two data spaces: (1) for ontologies and their
metadata structures; and (2) for usage information. The latter records data concerning
usage patterns of ontologies within the repository – i.e., queries performed against them,
Aondê operations used to create them, and provenance data not provided by the metadata
structure. This can contribute to optimize ontology management, and also help domain
experts in finding out more about ontology usage. The usage data space is still being
designed, and will not be discussed here.

All ontologies manipulated by Aondê are stored in Semantic Repositories, in-
cluding those extracted from third party repositories. Theunderlying assumption is that
ontologies are directly associated with end-user/client application needs and they should
be available to future requests. The metadata structure of an ontology is built by the
Management of Ontologiesmodule (see Section 4.2.1).

Storage manipulation primitives insert, delete or replaceentire ontologies and/or
their metadata. These primitives use coarse-grained operations: our unit of storage is an



entire ontology (or its metadata structure). Thus, they areour retrieval and update units.
Our main goal, at this stage, is to support high-level semantic manipulation at Aond̂e.
Thus, we did not concern ourselves with finer granularity operations at the storage level
(e.g., to retrieve or replace parts of an ontology). This hasan impact on performance,
since real ontologies can be very large.

On the other hand, it does facilitate semantic manipulation. For instance, since
Aondê constructs views based on the central concept paradigm, itneeds an entire ontology
in order to compute a view. The same applies to queries: rather than considering a query
to be low-level storage operation, Aondê requests an entire ontology from storage, to
perform queries afterwards – e.g., with or without inference. This design decision on
storage operations may evolve in the future, when we finish the design of the usage space,
and obtain data on user profiles.

Figure 7 illustrates the structure of a Semantic Repository,composed by the on-
tology and metadata data space, and the usage data space. Thefigure shows that each
ontology stored has an associated metadata structure, indicating, for instance, its URI, the
creation date, and associated keywords.

Figure 7. Example of a Semantic Repository

OWL [8], the standard recommended by the W3C Consortium, was adopted to
represent ontologies. We have adopted the OMV (Ontology Metadata Vocabulary) stan-
dard [28] to provide metadata information. The metadata structure illustrated in figure 7
uses OMV terminology, detailed in Section 5.

Since we are concerned with biodiversity issues, the ontologies of the Semantic
Repositories store concepts about: (1) geographical features, (2) biological information
and (3) other kinds of information that is relevant to research in biodiversity (e.g. con-
cerning images). Biological ontologies provide descriptions about taxonomy, evolution
and morphology of species, as well as ecological and trophicrelations (i.e., position oc-
cupied by a species in a food chain). Ontologies on geographical features are associated
with terms that describe geographical, climatological andenvironmental characteristics
of a region, as well as other natural or artificial elements that may have an impact on an
ecosystem.



5. Implementation Aspects

Aondê has been implemented in the Java language. Access and navigation over ontology
contents are provided by the Jena framework [14] version 2.4. This version of Jena is
composed by an RDF API, an OWL API, in-memory and persistent storage, SPARQL
and RDQL query engines and a rule-based inference engine.

Our Web service implementation uses Apache Axis, a widely adopted open source
Web service framework. It consists of a Java implementationof the SOAP server, and
various utilities and APIs for generating and deploying Webservice applications. Sections
5.1 and 5.2 describe persistence details, and section 5.3 the implementation of Aond̂e’s
modules.

5.1. Semantic Repositories: Ontology and Metadata Structures

A Semantic Repository is composed of two data spaces: ontology and metadata; and
usage data. The second data space is under construction, andoutside the scope of this
paper (see Section 4.3). The first space contains[ontology, metadata] pairs of files, where
the ontology is expressed in OWL and the associated metadata structure in OMV. OWL
supports description of concepts with distinct granularity details (OWL Lite, OWL DL
and OWL Full) – one of the reasons for which it was chosen, sincethe ontologies that can
be manipulated by the service are not known beforehand.

The ontologies used to test Aondê were built in Prot́eǵe [24]. This tool has a plug-
in to manipulate ontologies in OWL, with a graphic interface to define classes, properties,
instances and axioms in description logics.

OMV files are represented in RDF, using the namespaceomv (http://omv.
ontoware.org/omv-core-1.0#). Metadata elements are categorized according to their type
and purpose as follows:

• General: elements providing general information about the ontology: URI, name,
acronym, description, creationDate (required) and documentation, keywords, sta-
tus, modificationDate (optional);

• Availability: information about ontology location: resourceLocator, version (re-
quired) and hasLicense (optional);

• Applicability: elements describing the intended usage or scope for the ontol-
ogy: isOfType (required) and hasDomain, naturalLanguage, designedForOntolo-
gyTask, hasFormalityLevel (optional);

• Format: information about the physical representation of the ontology, including
the representation language in which the ontology is formalized: hasOntology-
Language, hasOntologySyntax (required);

• Provenance: elements about the organizations that contributed to the cre-
ation of the ontology: hasCreator (required) and hasContributor, usedOntology-
EngineeringTool, usedOntologyEngineeringMethodology,usedKnowledgeRep-
resentationParadigm (optional);

• Relationship(optional): information about relationships with other ontologies:
useImports, hasPriorVersion, isBackwardCompatibleWith, isIncompatibleWith;

• Statistics(required): various metrics on the graph that underlies the ontology:
numClasses, numProperties, numIndividuals, numAxioms.



Figure 8 presents OMV metadata for one of the ontologies developed by us, which
will be used in our case study. It shows, for instance, that the engineering tool used to
build this ontology was Protéǵe (5th line from bottom), and that description logics was
used for knowledge representation (preceding lines). In addition, it contains facts such as:
the ontology has 5749 individuals, 22 classes, and was created in 2007-02-15.

Figure 8. OMV Metadata for one of the ontologies used in the case st udy

5.2. The Semantic Repository Web Service

We had several choices for implementing Semantic Repositories. We adopted Jena to
access ontologies because its persistence engine allows RDFgraphs to be stored in rela-
tional databases. Thus, all data in Semantic Repositories are actually stored in databases.
We chose the PostgreSQL database management system to implement persistence, where
both ontologies and their metadata are stored as RDF triples.

We conducted tests on 3 distinct semantic repositories, building a Web service for
each; the largest ontology contains 5749 instances. In implementations of Web services,
invocations and results are SOAP messages with attached OWL/RDF files. Ontology
(and metadata) insertion in Jena requires the client application to create the ontology
identifier that is to be inserted in Jena’s database. If the identifier provided already exists
in the database, the insertion operation will not be accepted. This is a problem, since it



places on the client application the burden of “inventing” identifiers for new ontologies
and associated metadata. To solve this, our ontology/metadata insertion code generates
unique identifiers.

The operations allowed by a Semantic Repository Web Service are:

• Insertion, replacement and deletion of an ontology: receives an ontology iden-
tifier and, in case of insertion and replacement, anidOntology, or an OWL file
containing the ontology to be inserted or to replace the ontology identified;

• Insertion, replacement and deletion of a metadata structure: receives the identifier
of the ontology and, in case of insertion and replacement, the URL of a remote
metadata file or an RDF file;

• Retrieval of an ontology and/or associated metadata structures: receives an ontol-
ogy identifier, builds the corresponding OWL/RDF file and returns it;

• List ontologies: lists all ontology identifiers stored in a repository;
• Requests on usage information – retrieve/insert/delete/modify usage information

(under design).

Figure 9 presents the WSDL specification of methodManagementOntology, that
performs insertion and replacement of ontologies. The two<wsdl: message> sections
at the beginning respectively indicate the parameters of the SOAP message sent to the
service, and the output parameter. For instance, aManagementOntologyRequestmessage
to the service (3rd line) must indicate a repository URL, an operation (“insertion” or
“replacement”), an identifier and an OWLFile. It returns a string to indicate if it was
successful or not. A failure occurs when a replacement invocation has an identifier that is
not in the database. Other methods are similarly specified.

5.3. Implementing Aond̂e

Aondê was implemented as a Web service. We recall that all operations are performed
in memory, after retrieving ontologies from a persistent storage structure, either from
Semantic Repositories or from third party External Repositories. All operations offered
by Aond̂e’s interface have a parameter that contains the (set of) URL denoting source
Repositories and another URL where the result of the operationshould be stored, when it
creates an ontology – thetargetRepparameter of the operations.

All modules have been tested on at least one Semantic Repository and at least
one third party External Repository. Since there are no Web Services available to access
biodiversity ontologies – just portals – third party repositories used in Aond̂e are accessed
by HTTP requests. These requests have the form: “ServiceURI ?Parameters”, where
parameters are combined by connector “&”.

Search and Taxonomic Search

Tests were conducted as follows. The external repository used to test
taxonomic (non-ranked) search was the Spire portal3 [42] accessed via URI
“http://spire.umbc.edu/ont/ethan-part.php”. Since it does not offer a Web service in-
terface, we had to implement this external access using HTTPrequests, which return an
OWL file. The OWL file is processed by Aondê (moduleManagement of Ontologies) to
generate an OMV metadata structure. The ontology and its metadata are stored in the

3http://spire.umbc.edu/ont/



Figure 9. WSDL of ManagementOntology method

designated target Semantic Repository. If the search is instead conducted in a Semantic
Repository, no ontology is created.

Ranked Search

The external ontology repository used by ranked search is the Swoogle Web ser-
vice4 [17], accessed via URI“http://logos .cs.umbc.edu:8080/swoogle31/q”. This search
is implemented in three steps: (1) retrieval of ontologies and metadata from the source
repository, (2) eventual storage of new ontologies into thetarget Semantic Repository,
and (3) ranking. Step (1) is subdivided into two phases. First, the Swoogle “Search ontol-
ogy” operation returns an RDF file containing URLs of ontologies and Swoogle metadata.
Next, each of these ontologies is accessed by it URL. Step (2) stores Swoogle ontologies
in the target Semantic Repository. In addition, Aondê automatically creates OMV meta-
data for each ontology, based on Swoogle metadata.

Finally, in step (3), the retrieved ontologies (that contain classes or instances
whose names match search terms exactly or partially) are ranked and returned with their

4http://swoogle.umbc.edu



rank values, combining several metrics. Two of these metrics are based on computation
of the minimal path between concepts in an ontology graph. This required implementing
code that transformed an OWL ontology specification into a graph. The conversion of
an ontology into a graph considers classes and instances as vertices andis-a relationships
and class properties as edges.

Query

The Query method supports RDQL and SPARQL languages. We have selected
Jena version 2.4. We did not use version 2.5 because it does not support RDQL queries.
The reasoner adopted is the default OWL reasoner, which can beconsidered to be
instance-based. It uses rules to propagate theif andonly–if implications of the OWL
constructs on instance data. Reasoning about classes is doneindirectly – for each de-
clared class a prototypical instance is created.

Views

The View method builds a view (a new ontology) extracting parts of the source on-
tology. The main difficulty in coding this method concerned graph traversal. Indeed, view
construction requires navigation along source ontology paths to retrieve the elements de-
fined by directives and rebuild these parts into the view. This navigation is more difficult
when the domain or the range of parameters or axioms are composed by union or inter-
section of many elements. An ontology identifier is automatically created and returned
by the method. We point out that views containing more than one central concept can be
built by first creating separate views using the View method,and then aligning them using
the Integration method.

Integration

The Integration method aligns two source ontologies, automatically creating an
identifier for the alignment result. It is performed in two steps - first looking for string
similarity, and then for structural similarity, which usesJaro metrics [15]. Synonym iden-
tification uses the ITIS database (Integrated Taxonomic Information System)5 [37] for
comparison of biology taxonomic terms, and the WordNet dictionary [33] (version 3.0)
for other comparisons. Mapping candidates are analyzed structurally as regards proper-
ties and axioms, to avoid cases in which classes with the samename, but with different
contexts and meanings, are identified as similar.

In the resulting aligned ontology, similar concepts receive OWL tags. Alignments
discovered between classes are represented by the<owl:equivalentClass> tag, and be-
tween instances by the<owl:sameAs> tag. Often, however, distinct ontologies differ
in their level of detail in describing a domain’s entities – e.g., a class in a given ontol-
ogy has the same meaning as an instance in another. For this reason, Aond̂e also dis-
covers matchings between classes and instances, and represents these alignments by tag
<owl:sameAs>.

Our alignment techniques were adapted to deal not only with classes, but also
with instances (in biodiversity, taxon terms). In many situations, scientific names of tax-
ons only differ in their suffixes. For example, the strings“Asterales” and“Asteraceae”
have high string similarity, although they refer to different taxons: thealessuffix indicates

5http://www.itis.gov



order and theaceaesuffix indicates family. Furthermore, this kind of string needs specific
synonym dictionaries, containing other scientific names used for the same taxon or ver-
nacular names. For this reason, our alignment implementation uses the ITIS database [37]
to check taxon synonyms. Since ITIS is only available on the Web in textual form, we cre-
ated a relational database for its contents. This required downloading ITIS files, parsing
them, and constructing the database via SQL insert commands.

Difference

The Difference method produces an XML file containing three lists, describing
the result of comparing two input ontologies,ontA andontB. The first list contains all
elements considered similar inontA andontB. The second list contains all elements
found in ontA without any similar element inontB, and the third contains elements
found inontB but without corresponding element inontA. Similarity is computed using
the same techniques explained for the Integration method.

6. Case Study

Our case study uses real data, and was provided by biologistswho work in the WeBios
project. It involves interactions among insects and plants, with data collected by many
teams over 20 years. This particular study is concerned withspecific interactions between
insects and acapitulum(the latin term for flower heads). This section uses a running
example, which will concentrate on the need for resolving a request to“retrieve insect
species”under different constraints. This will be enough to illustrate distinct possibili-
ties for invocations of Aond̂e, showing how it solves typical end-user requests, including
those not treated elsewhere. Each solution involves one or more invocations of operations
offered by Aond̂e.

Our biology partners concentrate their research on plants of the familyAsteraceae.
The insects of interest for our running example are those of ordersDiptera (flies) and
Lepidoptera(butterflies), and belong toendophagousspecies – their larvae live within
and feed upon flower head seeds. For a detailed description ondata concerning biological
aspects of the problem, the reader is referred to [5, 6, 21].

6.1. Constructing the Semantic Repository

The first step was to construct an ontology to describe the semantic backbone that our
biology partners use in their work. Figure 10 shows a portionof this ontology, created in
OWL, using the Prot́eǵe ontology engineering tool. Edges labeled withio connect classes
with their instances, whereas edges labeled withisa indicate sub-/superclass relationships.
All other labels correspond to properties (attributes or relationships).

To clarify our examples, we must briefly explain our experts’collection method-
ology to detect insect–plant interactions. They take field trips and collect flower heads
(capitulae), which they take back to their university lab. Flowers may contain insect eggs
or larvae, which will eventually hatch to become insects. Itis only then (sometimes weeks
after the field trip) that the insect can be identified. The collection unit is therefore the
capitulum.

Figure 10 shows, for instance, that an insect of theTomoplagia reimoserispecies
has an interaction with plant speciesVernonanthura membranacea. This interaction is



obtained following the ontology associations between the insect and plant species via
nodeCapitulum G0904. The figure also shows parts of the taxonomic tree of collected
plant species – speciesVernonanthura membranaceabelongs to genusVernonanthura,
itself part of theAsteraceaefamily.

Figure 10. Part of the colUN ontology, constructed with help of WeBios’ biologists. It de-
scribes interactions among insects and plants, in the context of th eir collection method-
ology

We have omitted most instances of the ontology, to simplify the figure. It describes
1468 collection records, and interactions among 281 different insect species and 623 dif-
ferent plant species. A Semantic Repository was created to store this ontology and asso-
ciated metadata. The repository URL ishttp://143.0106.23.89:8080/OntRepUNICAMP.
TheidOntology in invocations of Aond̂e is<colUN, http://143.0106.23.89:8080/ OntRe-
pUNICAMP>, wherecolUN is the ontology local identifier within the repository desig-
nated by the URI.

6.2. Basic Query Scenario

Consider a typical query in the plant-insect interaction scenario: “Return insect species
that prey on plant species Eupatorium odoratum and that were collected in the Atlantic
Rainforest”. This requires several kinds of semantic disambiguation – what is an “insect”,
what does “prey on” mean, what is an “Eupatorium odoratum”, what insect species were
collected in field trips, what is the “Atlantic Rainforest” and its geographical extent. Each
such consideration may require an invocation of Aondê, depending on data available on a
cache or on local repositories (e.g., the meaning and extentof “Atlantic Rainforest” may
have been precomputed elsewhere).

We will just retain, in the running example, the sub-query“Retrieve insect species
that prey on plant species Eupatorium odoratum”. The other issues can also be dis-



ambiguated using Aondê, or by other means – e.g., through a combination of database
queries, or even using user input (e.g., entering the coordinates of the Atlantic Rainforest
polygon). For instance, collection records basically state facts: species name, observa-
tion date and methodology, habitat classification, GPS location, scientist responsible, and
so on. Thus, a“scientist= Lewinsohn”predicate is normally resolved through an SQL
query to the collection database.

Issues concerning combined ontological and (relational) database query process-
ing are beyond the scope of this paper. Here, the assumption is that ontological disam-
biguation may be needed before or in parallel with query processing.

6.3. Ontology Query

Consider that biologists need the following information:“Retrieve insect species that
prey on plant species Eupatorium odoratum”. This can be solved by sending aQuery
invocation to Aond̂e:

Query (<colUN,http://143.0106.23.89:8080/OntRepUNICAMP>, SPARQL, queryStr,
false, XML)

Invocation parameters show that the query is specified inSPARQL and
is to be executed against ontologycolUN stored in repository pointed at by
http://143.0106.23.89:8080/OntRepUNICAMP. Field false indicates that the query will
not require inference. Figure 11 shows the contents of parameter queryStr. Prefix
http://www.owl-ontologies.com/Collection.owl#representscolUN’s namespace. Pa-
rameterXML indicates that the result should be an XML file (standard result for
SPARQL [12]).

Figure 11. Query “Retrieve insect species that prey on plant species Eupatorium odo ra-
tum” expressed in SPARQL

This query returns 18 insect species names (out of 281 instances). Figure 12 shows
part of the resulting XML file.

6.4. Ontology View

The ontology of Figure 10 embeds a special knowledge about the collection methodology
of our biologists: insect observations may have been recorded per flower head (one obser-
vation recorded per singlecapitulum) or per set of flowers (one observation recorded per
multiple flowerheads). This kind of difference in methodology may have considerable im-
pacts in conclusions drawn by experts. Consider, therefore,that the query in Section 6.3
has been modified and that now biologists want the following:“Retrieve insect species
that prey on plant species Eupatorium odoratum, for studieswhere species were counted



Figure 12. Excerpt of XML file returned by Query module invocation

per single capitulum”. One possibility to solve this query is to add more restrictions in
thewhereclause of the SPARQL query of figure 11.

Another possibility is to restrict the ontology to consideronly elements involving
onecapitulum. This alternative is executed through two successive invocations of Aond̂e:
(1) create a view for insects that were observed per singlecapitulum; (2) pose query of
Section 6.3 on this view. Step (1) is expressed as:

View (<colUN,http://143.0106.23.89:8080/OntRepUNICAMP>, SingleCapitulum,
{superclasses:1, isPreyedOn:2, isCapitulaeOfCollect:1, hasPlantSpecies:1, instances},

http://143.0106.23.89:8080/OntRepUNICAMP)

ParameterSingleCapitulumis the view’s central concept. The view is extracted
fromcolUN, in the repositorycolUN,http://143.0106.23.89:8080/ OntRepUNICAMP, and
is to be stored in the same repository (last parameter). The parameters in the directive
field are interpreted with respect to the central concept as follows: (a)superclasses:1–
the view must include all immediate superclasses ofSingleCapitulum, i.e., Capitulum–
see Figure 10; (b)isPreyedOn:2include all classes whose distance toSingleCapitulum
via isPreyedOnis either 1 or 2; (c) and (d) similar to (b), respectively for properties
isCapitulaeOfCollectand hasPlantSpecies; (e) instancesindicates that instances of all
these classes must be included in the view.

The view generated is partially illustrated, with a few instances, in Figure 13.
The twoCapitulumnodes have been expanded to show a few details of the view’s con-
tents. Notice that the view contains relationships among instances (e.g., betweenCollec-
tion PIC02130andCapitulumPIC02130). Relationships that appear amongst view in-
stances are those that were specified in the directives – i.e., the view will preserve not only
relationships concerning classes, but also the same relationships among the instances.
This implementation extends the views generated by Protéǵe, which only preserve rela-



tionships among classes.

Figure 13. View with central concept “SingleCapitulum”

The service invocation returns an ontology identifier created for this view,colUN-
SingleCapitulum. Once the view is created and stored, step (2) is executed, through an-
other invocation of Aond̂e, a query tocolUN-SingleCapitulum. In our study, this query
returns two species names:Xanthaciura mallochiandCecidochares fluminensis.

6.5. Ontology Search

Consider now that the biologists want to restrict their data to butterflies, i.e.,“Retrieve
butterfly species that prey on plant species Eupatorium odoratum”. Butterflies are insects
of orderLepidoptera. However,colUN concentrates on insect species, and does not con-
tain information on their taxonomic orders (a higher taxomonic level). Thus, there is a
need to perform a search elsewhere to get this information.

In other words, this request can be solved through three invocations to Aond̂e:
(1) search elsewhere for taxonomic information onLepidoptera; (2) align the ontology
retrieved in step (1) with thecolUN ontology, to identify which species are butterflies;
(3) invoke a query operation on the aligned ontology, using aquery similar to the one
presented in Section 6.3.

Step (1) is achieved by invoking Aondê with aSearchTaxonrequest, on external
third party repositories – here, Spire6 [42]:

SearchTaxon (Lepidoptera,{descendants},Spire,
http://143.0106.23.89:8080/OntRepUNICAMP)

ParameterSpire indicates that the search will be conducted in Spire, andLepi-
dopterais the scientific name to be searched for. The directivedescendantsrequests to
return all lower taxons. The resulting ontology, partiallyillustrated in Figure 14, is a tax-
onomic hierarchy rooted atLepidoptera. Notice that species names are not all at the same

6http://spire.umbc.edu/ont/



distance from the root. This occurs because some species have taxonomic subclassifica-
tions, such as subfamilies and tribes.

Figure 14. Part of ontology on Lepidoptera order retrieved from Spire

This ontology will be stored in the repositoryhttp://143.0106.23.89:8080/ OntRe-
pUNICAMP; the identifier returned islepdDesc. The second step (alignment), needed to
solve the scientists’ request, will be treated further on, in Section 6.7.

6.6. Differences Detection

Taxonomic classifications of living beings change with time, reflecting new knowledge
about species. This involves not only adding new species, ormodifying their names,
but also revisions that bring about structural changes (e.g., creation of new branches, or
moving a species to another branch). Furthermore, distinctresearch groups may prefer
different classifications. Since our biology partners havebeen collecting data for 20 years,
they must constantly check the terms they used in the past. Consider, thus, that they want
to check their ontologycolUN against published data on theAsteraceaeplant family.

This can be performed via three successive invocations to Aondê, as follows: (1)
perform aSearchTaxonon Spire, to retrieve published taxonomic data on taxonAster-
aceaeand itsdescendants– the result, partially illustrated in Figure 15 (a), is stored in
a Semantic Repository, receiving identifierastDesc; (2) to speed up comparison, restrict
the information contained in ontologycolUN to data onAsteraceae, by creating a view
with this term as central concept (analogous to view creation in Section 6.4) – the result,
partially illustrated in Figure 15 (b), will be materialized in a new ontology, identified by
colUN-Asteraceae; (3) compute the difference betweencolUN-AsteraceaeandastDesc.

Step (3) is specified as:



Difference(<astDesc,http://143.0106.23.89:8080/OntRepUNICAMP>,

<colUN-Asteraceae,http://143.0106.23.89:8080/OntRepUNICAMP>,
0.6, 0.4, 0.7)

The first two parameters indicate the ontologies to be compared; parameters0.6
and0.4 respectively represent weightsα andβ of formula 1 – see Section 4.2.6; and0.7
is the confidence threshold above which element similarities identified by the module are
considered to be modifications between ontologies.

Figure 15. Taxonomies for the Asteraceae family - (a) was retriev ed from Spire, (b) view
created from colUN using a View operation

The result of this invocation is composed of three lists of URIs: ListModification,
ListA-BandListB-A, respectively containing URIs of elements that were identified as sim-
ilar, and those that appear in A but not in B, and vice-versa.ListModification, moreover,
specifies the kinds of difference detected between similar elements. Figure 16 shows part
of the result.

The figure shows that taxonsEupatorium(in colUN-Asteraceae) and Chromo-
laena (in astDesc) in fact correspond to the same genus withinAsteraceae– not only
were these terms identified as synonyms by ITIS, but they alsoshare a common super-
class. Hence, they are listed withinListModification; their difference lies in their class
labels and hierarchy. SpeciesEupatorium odoratumandChromolaena odorata, also sim-
ilar, differ both in class labels and hierarchy. TaxonsEupatorieae, Vernonanthuraand
Vernonanthura oligolepisappear incolUN-Asteraceae, but not inastDesc, being thus
characterized as members ofListB-A, while taxonsLepidaploaandLepidaploa remoti-
flora are absent in the former and present in the latter, hence belonging toListA-B.

The result shows that the plant speciesEupatorium odoratum, of our running ex-
ample, has a new official scientific name –Chromolaena odorata. Thus, if our scientists
want to integrate their data with information from other sources, they need to take this
into consideration.



Figure 16. Part of the result of the request to identify difference s between the ontologies
from Spire and from the project, for the Asteracea family

6.7. Ontology Integration

Let us now return to the question of Section 6.5:“Retrieve butterfly species that prey on
plant species Eupatorium odoratum”. Scientists are now aware thatEupatorium odora-
tumhas a new nameChromolaena odorata, which must be considered in processing the
request.

This requires the following invocation sequence: (1) search for Lepidopterain-
formation to identify butterflies (this was already performed in Section 6.5, and its result
stored inlepdDesc); (2) aligncolUN with lepdDesc, to identify insects that are butterflies,
producingcolUN-Lep; (3) aligncolUN-Lepwith astDesc, which was produced by another
taxonomic search; (4) query the ontology resulting from step (3).

The third step will allow putting together butterfly speciesrecorded incolUn that
prey on bothEupatorium odoratumandChromolaena odorata. The alignment requests
of steps (2) and (3) are specified as follows:

Integration(<colUN,http://143.0106.23.89:8080/OntRepUNICAMP>,
<lepdDesc,http://143.0106.23.89:8080/OntRepUNICAMP>,
0.8, 0.2, 0.7, http://143.0106.23.89:8080/OntRepUNICAMP)



Integration(<colUN-Lep,http://143.0106.23.89:8080/OntRepUNICAMP>,
<astDesc,http://143.0106.23.89:8080/OntRepUNICAMP>,
0.8, 0.2, 0.7, http://143.0106.23.89:8080/OntRepUNICAMP)

The first two parameters of each request provide the source ontologies; all results
will be stored in the same repository (last parameter). Parameter0.7 represents the con-
fidence threshold for an alignment to be included;0.8 and0.2 respectively stand for the
values forα andβ to compute similarity confidence – see Section 4.2.5.

The final aligned ontology resulting from the second Integration request is par-
tially displayed in Figure 17 – its leftmost branch originates fromlepdDesc(see Figure
14), the central part fromcolUN (see Figure 10), and the rightmost part fromastDesc
(see Figure 15(a). Class alignments are represented by tag<owl:equivalentClass>, and
instance alignment by<owl:sameAs>.

Figure 17. Part of colLep ontology, produced by invoking the Integration module

The first integration (betweencolUN and lepdDesc) may seem straightforward
at first glance (i.e., akin to a “natural join between two ontologies”). However, it mer-
its several remarks. First, it provides alignments betweenclasses of one ontology with
instances of another, correlating species instances ofInsect(in colUN) with species sub-
classes ofLepidoptera(in lepDesc). This is a new kind of alignment, not available in
existing tools, which are limited to trying to match elements of the same kind (e.g., class–
class, instance–instance). We, instead, support other kinds of matching, as described in
Section 5.3, using<owl:sameAs> links. Another observation is that finding similar terms
required knowledge of taxonomic terminology, which was included in our string match-



ing implementation. Without these kinds of comparisons, the resulting aligned ontology
would not identify these correspondences.

The result of step (3) (second integration, betweencolUN-lepandastDesc) could
only be obtained through other features necessary in biodiversity applications. First, we
take advantage of synonyms in taxonomic classifications to discover matchings. Second,
we combine string similarity with structural similarity tocompute alignment confidence.
The latter is the case of classesChromolaenaand Eupatorium: they had one instance
aligned by synonym identification (Chromolaena odorataandEupatorium odoratum) and
their superclasses (Asteraceae) were identified as equivalent. String and structural simi-
larity computation were also used in other cases (e.g., difference, alignment of step (2)),
but we chose this example to show that both are needed to find appropriate correspon-
dences.

The result of the two successive alignments can now be used toobtain the re-
quired information:“Butterfly species that prey on plant species Eupatorium odoratum”,
using an invocation to aQuery operation. However, unlike previous queries, this one re-
quires inference pre-processing. It must return insect species that are in all subclasses
of Lepidoptera, and that prey on flowerheads of plants species that are equivalent to
speciesEupatorium odoratum. Inference must be used to compute subclasses ofLepi-
doptera(transitivity of propertysubClassOf). It must also be used to retrieve equivalent
(aligned) elements – e.g., taking advantage of the symmetryof propertiesequivalentClass
andsameAs. This query returned 6 butterfly species, among whichSynchlora liquoraria
andAdaina bipunctata.

6.8. Ranked Search
Suppose that, now, the biologists want to obtain additionalinformation about theplant
concept, such as plant structure and their interactions with others biotic entities. This
information is not available in any ontology mentioned so far. This task requires a search
for the “plant” concept in third party External Ontology Repositories. Here, sinceplant is
not a domain-specific term, the search request was sent to theSwoogle7 [17] repository:

SearchRank ({plant}, {0.4,0.2,0.4,0},{Swoogle},
http://143.0106.23.89:8080/OntRepUNICAMP)

Like the rest of the examples, the resulting ontologies are stored in the Semantic
Repository named in the Search invocation, to be subsequently reused in other opera-
tions. The field{plant} indicates the term to search for inSwoogle. The set of positional
weights are assigned as follows: match = 0.4; density = 0.2; centrality = 0.4 and simi-
larity semantics = 0. This invocation searches for a single term, so thesimilarity metric
is not applicable and receives weight = 0. We recall that the sum of weights must be 1.
In this example, we wanted to assign more importance to centrality and match metrics,
and less importance to density metrics. Weights0.4, 0.4 and0.2 indicate this decision.
This specific invocation returns a list with 10 identifiers (i.e., Swoogle has 10 ontologies
with plant) ordered according to ontology rank, and store all the ten ontologies in the
designated target repository.

The Figure 18 shows the ontology with the highest ranking value, available in the
URL http://wow.sfsu.edu/ontology/rich/EcologicalConcepts.owl. The figure shows that

7http://swoogle.umbc.edu



the plant term appears in several class names, outlined in the graph –Plant, PlantDe-
scription, PlantPartDescriptiveTrait, PlantParts, PlantSpecies, AboveGroundPlantParts
andPlantTrait. This high incidence of this term (the highest of all ontologies returned
by the search) put this ontology as the first in the rank, usingthe metrics ofPartial and
Exact Matchings. Moreover, this ontology contains many other concepts related to these
classes (centrality criterion) – such as classesOrganism, BioticItem,Leaves, Seedsand
Stems, also contributing to its rank.

Figure 18. Ontology ecoConcept , highest ranked in the search for plant in Swoogle

7. Conclusions

This paper discussed the specification and the implementation of Aond̂e – a Web service
that provides distinct kinds of operations on multiple ontologies at the same time, on the
Web. Aond̂e supports semantic and interoperability needs by combining the use of on-
tologies to that of Web services. It was specified and built tosupport the requirements
of biodiversity researchers, who need to have transparent access to distributed and het-
erogeneous data sources. One of the important issues in thiscontext is that biodiversity
studies have to accommodate and combine multiple views and needs of a wide range of
experts whose research involves deriving new relationships among species, for specific
geographic regions.

Unlike all other Web ontology services available, Aondê supports management
of many ontologies at a time (in ranking, difference and integration). The design and
implementation of its functions combine and extend facilities offered by other tools –
e.g., enhancing central concept computation in view extraction. Though motivated and



developed by biodiversity concerns, Aondê can be used in other domains that present the
same requirements, typically those in e-Science.

The design and development of Aondê showed us there are still many challenges
to be met when dealing with ontologies, some of which are discussed in the subsequent
paragraphs. One important lesson is that there is a wide gap between several proposals for
ontology management and their implementation. Many published experiments are based
on small examples, and do not show solutions to real life problems – e.g., handling only
standard textbook examples such as those involving teachers and students, or papers and
authors. Thus, we could not adopt many solutions because they could not deal with our
problems – e.g., having to handle multiple valid ontologies.

Another lesson concerns the usefulness of applying design principles of Software
Engineering and Database Systems to our design and implementation efforts. One ex-
ample of such a decision was the clear separation between persistence of ontologies and
their semantic manipulation. This lent flexibility to our implementation, and will help
maintain independence between these two layers, which can evolve separately. This kind
of concern is not found in most proposals dealing with ontology management.

Though W3C recommends the adoption of OWL, and is leaning towards the adop-
tion of SPARQL as a standard, most large ontologies (e.g., TAMBIS [10]) have not been
written in OWL. Thus, in spite of standardization efforts, there is a need for translating
these ontologies into OWL, or to use tools that handle ontologies written in multiple lan-
guages – e.g., as in [58]. This is not an easy task, because of the differences in expressive
power among ontology specification languages, and remains an open issue.

For many authors, ontologies only serve as sophisticated dictionaries to look for
synonyms of terms (e.g., they only consider is-a relationships among terms). This sub-
utilization of such a powerful resource is largely due to thelimitations of available on-
tology toolkits and environments. Even when ontologies arecompletely defined using
description logics, the absence of tools that allow adequate exploration of these logics
forces researchers to limit themselves to more prosaic uses.

Web services are advertised – and recognized – to be a good solution to interoper-
ability. Nevertheless, the actual options for design and implementation of new services are
not discussed in the literature. For instance, our persistence service publishes ontologies
within files that are attached to SOAP messages. Other options exist, such as embedding
the ontology in the message, or just returning its URI. Each solution has its pros and cons.
For instance, embedding the ontology in the message would require treating it as an ob-
ject, with many methods associated, thus creating very longmessages. On the other hand,
several Web service tools (including the one we used, Axis 1.4) do not work well when
attachments are too large.

The adoption of Web services to access the persistence layerprovides indepen-
dence and interoperability, at the cost of lower security. Thus, another research issue
concerns authorization mechanisms, to avoid undesirable updates to curated ontologies.
This has an impact on ontology reliability, and is a researchtopic that needs to be attacked.

Finally, we point out that our decision to store intermediate ontologies in Seman-
tic Repositories has several advantages, in spite of taking up storage space. The main
issue is that such ontologies are expensive to create (especially those that are imported



from external repositories, and aligned ontologies). Thus, storing them helps speed up
subsequent access to their contents.

Ongoing and future work concerns several research and implementation aspects.
We are building a suite of test cases, to analyze the service’s performance when many
repositories are accessed at one operation. Programming aspects also include the incor-
poration of Aond̂e into WeBios.

Many research issues need to be tackled. First, integrationis based on align-
ment. This must be extended to, at least, ontology merging, which poses several prob-
lems involving merge priorities and result computation. Second, one of the central ideas
is that any new (sub-) ontology must be first stored in some Semantic Repository, and
only then be submitted to other Aondê operations. Though this may speed up retrieval,
it brings about issues of storage allocation and ontology replication. Thus, alternative
design options have to be considered – e.g., creating some kind of repository directory.
A third direction is to endow Aond̂e with more intelligence, so that it can support more
complex requests by combining elementary operations, e.g., by constructing composite
service invocations. Still another issue to investigate isalternatives to alignment imple-
mentation. Our solution is to relate classes of one ontologywith instances of another via
<owl:sameAs> tags. This immediately “promotes” the ontology language toOWL Full,
which still needs better inference mechanisms.

Finally, another ongoing effort concerns finishing the design and implementation
of the ontology usage data space within Semantic Repositories. This data space will pro-
vide additional performance and usage functionality to theSemantic Repository Service,
similar to auxiliary low-level DBMS structures that help performance tuning. A first ver-
sion of this space and associated operations has been implemented, but we need to define
appropriate tuning and usage parameters before we can validate its design.

Acknowledgments

This research was partially financed by Microsoft Research, the initial supporter of the
WeBios project, and by Brazilian funding agencies CNPq, CAPES and FAPESP (Proc.
05/57424-0). We also thank the reviewers for their insightful comments.

References

[1] S. Abels, L. Haak, and A. Hahn. Identification of common methods used for ontology
integration tasks. InIHIS ’05: First International Workshop on Interoperability of
Heterogeneous Information Systems, pages 75–78. ACM Press, 2005.

[2] S. Abiteboul, R. Goldman, J. McHugh, V. Vassalos, and Y. Zhuge. Views for Semistruc-
tured Data. InProc. International Workshop on Management of Semistructured
Data, 1997.

[3] H. Alani, C. Brewster, and N. Shadbolt. Ranking Ontologies with AKTiveRank. In
International Semantic Web Conference, volume 4273 ofLecture Notes in Computer
Science, pages 1–15. Springer, 2006.

[4] H. Alani, S. Harris, and B. O’Neill. OntologyWinnowing: ACase Study on the AKT
Reference Ontology. InCIMCA/IAWTIC, pages 710–715. IEEE Computer Society,
2005.



[5] A. M. Almeida, C. R. Fonseca, P. I. Prado, M. Almeida-Neto, S. Diniz, U. Kubota, M. R.
Braun, R. L. G. Raimundo, L. A. Anjos, T. G. Mendonça, S. M. Futada, and T. M.
Lewinsohn. Diversidade e ocorrência de Asteraceae em cerrados de São Paulo.Biota
Neotropica, 5:27 – 43, 2005.

[6] A. M. Almeida, C. R. Fonseca, P. I. Prado, M. Almeida-Neto, S. Diniz, U. Kubota,
M. R. Braun, R. L. G. Raimundo, L.A. Anjos, T. G. Mendonça, S. M. Futada, and
Thomas M. T. M. Lewinsohn. Assemblages of endophagous insects on Asteraceae
in São Paulo Cerrados.Neotropical Entomology, 35:458 – 468, August 2006.

[7] G. Alonso, F. Casati, H. Kuno, and V. Machiraju.Web Services - Concepts, Architectures
and Applications. Springer Verlag, November 2004.

[8] G. Antoniou and F. van Harmelen. Web Ontology Language: OWL. In S. Staab and
R. Studer, editors,Handbook on Ontologies in Information Systems, pages 76–92,
2003.

[9] M. Ashburner, C. A. Ball, J. A. Blake, D. Botstein, H. Butler, J.M. Cherry, A. P. Davis,
K. Dolinski, S. S. Dwight, J. T. Eppig, M. A. Harris, D. P. Hill, L. Issel-Tarver,
A. Kasarskis, S. Lewis, J. C. Matese, J. E. Richardson, M. Ringwald, G. M. Ru-
bin, and G. Sherlock. Gene ontology: tool for the unificationof biology. the gene
ontology consortium.Nature Genetics, 25(1):25–29, May 2000.

[10] P. G. Baker, A. Brass, S. Bechhofer, C. Goble, N. Paton, and R. Stevens. TAMBIS–
Transparent Access to Multiple Bioinformatics InformationSources. InInt Conf In-
telligent Systems for Molecular Biology, volume 6, pages 25–34, Montreal, Canada,
June 1998.

[11] C. Batini, M. Lenzerini, and S. B. A. Navathe. Comparative analysis of methodologies
for database schema integration.ACM Computing Surveys, 18(4):323–364, 1986.

[12] D. Beckett and J. Broekstra. SPARQL Query Results XML Format. Technical report,
W3C, April 2006.

[13] J. Bruijn, F. Martin-Recuerda, D. Manov, and M. Ehrig. State-of-the-art survey on Ontol-
ogy Merging and Aligning. Technical report, SEKT project D4.2.1, 2004.

[14] J. Carroll, I. Dickinson, C. Dollin, D. Reynolds, A. Seaborne, and K. Wilkinson. Jena:
implementing the semantic web recommendations. InWWW Alt. ’04: Proc. of the
13th international World Wide Web, pages 74–83. ACM Press, 2004.

[15] W. W. Cohen, P. Ravikumar, and S. E. Fienberg. A Comparison of String Distance Met-
rics for Name-Matching Tasks. InProc. of the IJCAI-2003 Workshop on Learning
Statistical Models from Relational Data, pages 73–78, August 2003.

[16] Z. Cui and P. O’Brien. Domain Ontology Management Environment. InHICSS ’00:
Proc. of the 33rd Hawaii International Conference on System Sciences-Volume 8,
Washington, DC, USA, 2000. IEEE Computer Society.

[17] L. Ding, T. Finin, A. Joshi, R. Pan, R. S. Cost, Y. Peng, P. Reddivari, V. Doshi, and
J. Sachs. Swoogle: a Search and Metadata Engine for the Semantic Web. In
CIKM ’04: Proc. of the thirteenth ACM international conferenceon Information
and knowledge management, pages 652–659, New York, NY, USA, 2004. ACM
Press.



[18] A. Doan, J. Madhavan, P. Domingos, and A. Halevy. Learning to Map between Ontologies
on the Semantic Web. InWWW ’02: Proc. of the 11th international conference on
World Wide Web, pages 662–673. ACM Press, 2002.

[19] M. Duke and M. Patel. An Ontology Server for Agentcities.NET. Technical report,
September 2003.

[20] C. H. Felićıssimo. Semantic Web Interoperability: One strategy for the Taxonomic On-
tology Alignment (in Portuguese). Master’s thesis, Pontifical Catholic University of
Rio de Janeiro (PUC–FRJ, August 2004.

[21] C. R. Fonseca, P.I. Prado, M. Almeida-Neto, U. Kubota, andT. M. Lewinsohn. Flower-
heads, herbivores, and their parasitoids: food web structure along a fertility gradient.
Ecological Entomology, 30:36–46, February 2005.

[22] R. B. Freitas and R. S. Torres. Ontosaia: An ontology-basedtool for image retrieval and
semi-automatic annotation (in portuguese). InI Workshop in Digital Libraries, Proc.
XX Brazilian Symposium on Databases - SBBD 2005, pages 60–79, October 2005.

[23] Global Biodiversity Information Facility (GBIF). GBIF website. http:// www.gbif.org
(accessed February 26, 2007).

[24] J. H. Gennari, M. A. Musen, R. Fergerson, W. E. Grosso, M. Crubzy, H. Eriksson, N. F.
Noy, and S. W. Tu. The Evolution of Protege: An Environment for Knowledge-
Based Systems Development.International Journal of Human-Computer Studies,
58(1):89–123, 2003.

[25] L. C. Gomes Jr and C. B. Medeiros. Ecologically-aware Queries for Biodiversity Re-
search. InProceedings GeoInfo - Brazilian Geoinformatics Symposium. INPE -
SBC, 2007. Electronic proceedings, 12 pages.

[26] T. Gruber. Towards Principles for the Design of Ontologies Used for Knowledge Sharing.
International Journal of Human-Computer Studies, 43(5-6):907–928, 1995.

[27] P. Hammond, B. Aguirre-Hudson, M. Dadd, B. Groombridge, J. Hodges, M. Jenkins,
M.H. Mengesha, and W. Stewart Grant. The current magnitude of biodiversity.
Global biodiversity assessment, 1995.

[28] J. Hartmann, Y. Sure, P. Haase, R. Palma, and M. C. Suárez-Figueroa. OMV – Ontology
Metadata Vocabulary. InISWC 2005 - In Ontology Patterns for the Semantic Web,
November 2005.

[29] J. S. Hong, H.Y. Chen, and J. Hsiang. A digital museum of taiwanese butterflies. InACM
Digital Library, pages 260–261, 2000.

[30] E. Jiḿenez, R. Berlanga, I. Sanz, M. J. Aramburu, and R. Danger. OntoPathView: A
Simple View Definition Language for the Collaborative Development of Ontologies.
In B. López et al. (Eds.): Artificial Intelligence Research and Development, pages
429–436, 2005.

[31] L. C. Gomes Jr. An architecture to query biodiversity data on the Web (in portuguese).
Master’s thesis, State University of Campinas - UNICAMP, May 2007.

[32] Y. Kalfoglou and M. Schorlemmer. Ontology Mapping: theState of the Art.Knowledge
Engineering Review, 18(1):1–31, 2003.



[33] H. Kong, M. Hwang, and P. Kim. A New Methodology for Merging the Heterogeneous
Domain Ontologies Based on the WordNet. InNWESP ’05: Proc. of the Interna-
tional Conference on Next Generation Web Services Practices, page 235, Washing-
ton, DC, USA, 2005. IEEE Computer Society.

[34] J. Lee. An Application Programming Interface for Ontology. Technical report, November
2003.

[35] Y. Li, S. G. Thompson, Z. Tan, N. Giles, and H. Gharib. Beyond Ontology Construction;
Ontology Services as Online Knowledge Sharing Communities.In International
Semantic Web Conference - ISWC 2003, volume 2870 ofLecture Notes in Computer
Science, pages 469–483. Springer, 2003.

[36] F. Manola and E. Miller. Resource Description Framework(RDF) Model and Syntax
Specification, February 2004. http://www.w3.org/TR/rdf-primer/.

[37] R. McDiarmid. The Integrated Taxonomic Information System. InProc. of the Taxonomic
Authority Files Workshop, June 1998.

[38] D. L. McGuinness, R. Fikes, J. Rice, and S. Wilder. The Chimaera Ontology Environ-
ment. InProc. of the 17th National Conference on Artificial Intelligence and 12th
Conference on Innovative Applications of Artificial Intelligence, pages 1123–1124,
2000.

[39] N. F. Noy, S. Kunnatur, M. Klein, and M. A. Musen. Tracking Changes During Ontol-
ogy Evolution. In Sheila A. Mcilraith, Dimitris Plexousakis, and Frank van Harme-
len, editors,Third International Semantic Web Conference, pages 259–273. Springer
Berlin, November 2004.

[40] N. F. Noy and M. A. Musen. PROMPT: Algorithm and Tool for Automated Ontology
Merging and Alignment. InSeventeenth International Joint Conference on Artificial
IntelligenceAAAI/IAAI, pages 450–455, 2000.

[41] N. F. Noy and M. A. Musen. Specifying Ontology Views by Traversal. In Sheila A.
McIlraith, Dimitris Plexousakis, and Frank van Harmelen, editors,International Se-
mantic Web Conference, volume 3298 ofLecture Notes in Computer Science, pages
713–725, 2004.

[42] C. S. Parr, A. Parafiynyk, J. Sachs, L. Ding, S. Dornbush, T. W. Finin, D. Wang, and
A. Hollander. Integrating Ecoinformatics Resources on the Semantic Web. InProc.
in 15th International Conference on World Wide Web, pages 1073–1074. ACM,
2006.

[43] C. Patel, K. Supekar, Y. Lee, and E. K. Park. OntoKhoj: a Semantic Web Portal for
Ontology Searching, Ranking and Classification. InWIDM ’03: Proc. of the 5th
ACM international workshop on Web information and data management, pages 58–
61, New York, NY, USA, 2003. ACM Press.

[44] A. G. Perez, J. Angele, M. F. Lopez, V. Christophides, A. Stutt, and Y. Sure. A survey on
ontology tools. Deliverable 1.3, EU IST Project IST-2000-29243 OntoWeb, 2002.

[45] E. Prud’hommeaux and A. Seaborne. SPARQL Query Languagefor RDF. Technical
report, World Wide Web Consortium - W3C, 2006.



[46] E. Rahm and P. A. Bernstein. A Survey of Approaches to Automatic Schema Matching.
VLDB Journal: Very Large Data Bases, 10(4):334–350, 2001.

[47] J. A. Ramos. Mezcla autoḿatica de ontoloǵıas y cat́alogos electronicos. Technical report,
2001.

[48] A. Seaborne. RDQL: A Query Language for RDF. Technical report, World Wide Web
Consortium - W3C, 2003.

[49] P. Shvaiko and J. Euzenat. A Survey of Schema-based Matching Approaches. Technical
report, 2004.

[50] Sinbiota. S̃ao Paulo Biodiversity System site. http://sinbiota.cria.org.br/ (accessed May
10, 2007).

[51] J. A. Śanchez, C. A. Flores, and J. L. Schnase. Mutant: Agents as guides for multiple
taxonomies in the floristic digital library. InACM Digital Library, pages 244–245,
1999.

[52] H. Suguri, E. Kodama, M. Miyazaki, H. Nunokawa, and S. Noguchi. Implementation of
FIPA ontology service. InProc. of the Workshop on Ontologies in Agent Systems,
5th International Conference on Autonomous Agents, May 2001.

[53] R. S. Torres, C. B. Medeiros, M. A. Gonçalves, and E. A. Fox.A Digital Library Frame-
work for Biodiversity Information Systems.International Journal on Digital Li-
braries, 6(1):3 – 17, February 2006.

[54] M. Tury and M. Bielikov́a. An Approach to Detection Ontology Changes. InICWE ’06:
Workshop proceedings of the sixth international conference on Web engineering,
page 14, New York, NY, USA, 2006. ACM Press.

[55] R. Volz. ONTOSERVER - Infrastructure for the Semantic Web (Position Paper). InProc.
of Semantic Web Working Symposium - SWWS, Stanford, California, USA, 2001.

[56] R. Volz, D. Oberle, and R. Studer. Implementing Views for Light-Weight Web Ontologies.
In Proc. of Int. Database Engineering and Application Symposium - IDEAS, Hong
Kong, China, 07 2003.

[57] WeBios. WeBios - Web Service Multimodal Tools for Strategic Biodiversity Re-
search, Assessment and Monitoring. Home page http://www.lis.ic.unicamp.
br/projects/webios, 2007.

[58] P. Ziegler, C. Kiefer, C. Sturm, K. R. Dittrich, and A. Bernstein. Detecting Similarities
in Ontologies with the SOQA-SimPack Toolkit. In10th International Conference
on Extending Database Technology (EDBT 2006), volume 3896 ofLecture Notes in
Computer Science, pages 59–76. Springer, 2006.


