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�

, Claudia Bauzer Medeiros
�

�
Institute of Computing – University of Campinas – UNICAMP

CP 6176, 13084-971 Campinas, SP, Brazil
�
santanch � cmbm � @ic.unicamp.br

Abstract. The Semantic Web has opened new horizons in exploring Web func-
tionality. One of the many challenges is to proactively support the reuse of dig-
ital artifacts stored in repositories all over the world. Our goal is to contribute
towards this issue, proposing a mechanism for describing and discovering ar-
tifacts called Digital Content Components (DCCs). DCCs are self-contained
stored entities that may comprise any digital content, such as pieces of software,
multimedia or text. Their specification takes advantage of Semantic Web stan-
dards and ontologies, both of which are used in the discovery process. DCC
construction and composition procedures naturally lend themselves to pattern-
matching and subsumption-based search. Thus, many existing methods for Web
searching can be extended to look for reusable artifacts. We validate the pro-
posal discussing its implementation for agro-environmental planning.

1 Introduction

The search for efficiency in software development has prompted intensive research in
reuse and documentation practices. The same goals and practices have propagated to the
area of content design and management. The Web has accelerated such initiatives: IT
professionals need new kinds of tools and techniques to retrieve the appropriate digital ar-
tifacts from repositories all over the world. This presents challenges both in specification
and description, as well as in good searching mechanisms.

As a result of these efforts, there is an increase in the interchange of reusable
artifacts (content and software), assembled inside standard “containers” – the packages –
and stored in package libraries [CCSDS 2002]. We define a package as a structure that
delimitates, organizes and describes one or more pieces of digital content suitable for
reuse. The term digital content is used from now on to denote any content represented
digitally – e.g., pieces of software but also texts, audio, video, and so forth.

However, while the size of package libraries grows, effective reuse depends on
the ability to discover artifacts for given requirements. Klischewski [Klischewski 2003]
observed that there is a variety of resources, like fine-grained information elements, multi-
media items, services, or user related objects, which are meaningful for users. Therefore,
they are candidates for semantic markup using Semantic Web standards, providing a more
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semantic way to search and use them. This observation was made in a e-Government con-
text, but can be extended to the general reuse context.

Semantic Web efforts have addressed two directions: a common syntax and se-
mantic to exchange data; and a common syntactic and semantic infrastructure to provide
interoperability between processes. In the former direction, the initial approach was doc-
ument oriented, through annotations using RDF and OWL and pointers based on URIs
connected to Web documents. As pointed out in [Klischewski 2003], there is a wider
universe of “annotatable” artifacts on the Web, formed by “annotatable” sub-parts whose
organization depends on the artifact’s nature. The challenge is how to associate Semantic
Web annotations to artifacts and their subparts, in spite of their heterogeneity.

A similar challenge is faced by the second direction to describe different kinds of
process entities, meant to inter-operate. In this case, the heterogeneity of process entities
is hidden behind a standard interface. Here, Semantic Web-based standards (WSDL and
OWL-S) are used to describe process functionality and details of its working activities as
a composition of sub-processes.

Another challenge in this scenario is to build new products that properly combine
and reuse pieces, in spite of their diversity. Developers in this new scenario will not be
just computer science experts, thus requiring new models and tools [Mørch et al. 2004].
Moreover, reuse requires finding the adequate pieces of digital content, and therefore for
new means of describing, storing and retrieving these pieces.

WSDL and OWL-S are meant to describe process entities, and thus indirectly
associate a provided functionality with process entities (e.g., a video player software plays
video). However, one can also envisage the description of the potential functionality
associated with the nature of any other digital content (e.g., a video content can be played).
These functional annotations support finding the appropriate artifacts on the Web.

This paper contributes towards this direction. We propose a unified model to build
reusable digital artifacts. It can be used both for content design (content-centric approach)
or for software development (process-centric approach). In our model, each piece to be
reused is encapsulated inside a unit named Digital Content Component (DCC). Further-
more, our model expresses both the provided and potential functionalities via an interface
associated to any digital artifact. This functionality-based description provides a richer
semantic way to annotate any kind of digital content, hiding its heterogeneity behind a
standard interface. Semantic Web standards are adopted in many aspects of DCC specifi-
cation and Web service standards are adopted for the interface specification.

More specifically, the paper focuses on the technique used to specify DCC inter-
faces using OWL and OWL-S respectively. As will be seen, these semantically enriched
specifications enhance the possibility of reusing content. Moreover, they help discovering
DCCs that are suitable for a given product construction in two ways: the functionality
description is used to refine the search procedure, and the descriptions associated with
DCC operations are used to discover useful DCC subproducts “hidden” within a DCC.
For instance, images may provide pixels (e.g., a pixel inside a map) or videos may pro-
vide a set of frames (e.g., a commercial from a film), and so on. The issues discussed here
are presented by means of a practical example.

The remainder of the text is organized as follows. Section 2 details DCCs and



their specification based on OWL and OWL-S. Section 3 presents our three step pro-
cedure for DCCs discovery, based on their OWL metadata and interface specifications.
Section 4 presents how DCCs can be connected and assembled to form an application and
the role played by the interface specification. Section 5 considers related work, show-
ing how DCCs combine and generalize distinct reuse approaches. Section 6 presents the
conclusions.

2 Specifying DCCs

The specification of DCC considers two issues: clear separation of content and interface
specification, to support reuse; and use of ontologies for semantic annotation, to help find
appropriate DCCs and to match their connections. This section presents DCCs using as
background a real example for agricultural planning. Assume that experts want to forecast
the evolution of a given coffee plantation under certain weather conditions. Given these
as input, together with coffee plant geographic location, the output shows how the plants
will evolve. This result is seen by means of an animation that simulates the growth of a
plant for the input conditions provided.

2.1 An overview of DCC

A DCC is specified and stored as a unit composed by four distinct sections: (i) the content
itself, in its original format; (ii) the declaration, in XML, of an organization structure
that defines how components within a DCC relate to each other; (iii) a specification of
the DCC interfaces, using adapted versions of WSDL [Chinnici et al. 2004] and OWL-S
[Martin et al. 2004]; (iv) metadata to describe functionality, applicability, use restrictions,
etc., using OWL [Smith et al. 2004].

We differentiate between two kinds of DCC – process and passive DCCs. A
process DCC is process-centric: it encapsulates any kind of process description that can
be executed by a computer (e.g., sequences of instructions or plans). A passive DCC is
content-centric (e.g., a text or video file) and its interfaces define how its content can be
accessed.

DCCs are assumed to be stored in repositories on the Web. Interface and metadata
sections are used to help retrieve the appropriate DCCs from the repositories. There is
furthermore a DCC infrastructure that comprises an architecture to assemble DCCs into a
desired product. For more details on DCCs, see [Santanchè and Medeiros 2004].

Ontologies play a fundamental part in DCC description and semantic manage-
ment. According to [Cullot et al. 2003], there are two main kinds of ontologies: descrip-
tive and taxonomic. A descriptive ontology resembles database schemas. Its concepts
are interconnected by many kinds of semantic associations, and its purpose is to repre-
sent the intended domain as much as possible. A taxonomic ontology is used as a basis
for vocabulary alignment. Its structure organizes terms into generalization/specialization
hierarchies, and semantic links to express synonymy, composition, and so on.

Taxonomic ontologies are useful in information sharing activities
[Cullot et al. 2003]. We adopt them in DCCs to disambiguate the meaning of
DCC metadata and interface specification. More specifically, we postulate the need for
specific ontologies that define valid kinds of DCC and of terms used in defining DCC
interfaces. Fig. 1 shows diagrams that represent parts of two taxonomic ontologies, used



by our examples, and whose hierarchical relations will be explored in DCC semantic
relationships and search procedures. White-filled circles represent classes. Lines with
a diamond in one extremity represent subclass relationships, e.g. Rain is subclass of
Precipitation. Dashed lines indicate that some intervening nodes were ommitted
for simplicity.

Figure 1. Ontologies used by rainfall map component.

Our example concerns managing, creating and reusing content for agriculture ap-
plications. DCC discovery and reuse require domain semantics – in this case, the tax-
onomic ontology called SWEET – Semantic Web for Earth and Environmental Termi-
nology [Raskin and Pan 2003]. Fig. 1 shows two fragments of SWEET. The fragment at
the center concerns a taxonomic hierarchy about Rain, while the left fragment describes
physical measurements. The right fragment is part of our ontology constructed to classify
DCCs according their functionality. Each class in this ontology corresponds to a DCC
type, and each DCC is an instance of a class.

2.2 The Rainfall Map Content Component – Content Centric Approach

Our application requires combining rainfall and solar radiation data with coffee plant
growth simulation. We show how this can be done by first creating the DCCs and then
composing them.

Fig. 2 shows an example of a partial representation of a passive DCC. This com-
ponent encapsulates a temporal series of images containing one year of rainfall data for
São Paulo state. Each image is visualized in a map and represents the average rainfall
distribution in one month (i.e., each pixel contains the average rainfall value for the cor-
responding region). The internal organization structure of the component, a set of twelve
images (the content), is described in XML.

Both metadata (in OWL on top) and interface (in OWL-S displayed around the
organization structure) are presented using a simplified version of RDF-like Directed La-
belled Graph (DLG). Metadata and interface parameters are associated with ontological
terms.



Figure 2. Rainfall map content component representation.

In the metadata section there is a reference to the DCC ontology presented in
Fig. 1. It shows that the DCC is an instance of the ���������
	 class, with three property
values: 	��	���� , ��������������� and ���������� !����� . The values of �"�"������ !����� and �����������#�$� are
respectively related to SWEET and to the POESIA spatial ontology [Fileto et al. 2003].
The latter is a spatial ontology specific to Brazilian spatial unit organization.

The interface section presents operations using OWL-S �������%�&���'����(%�)� class hi-
erarchy [Martin et al. 2004]. It defines two operations (atomic processes in OWL-S):
�$�
	�*,+-�#��	��	�. and �$�
	/����� . The �$�
	�*0+��#�-	��1	�. operation returns a value of a pixel inside
a map image, given parameters  !�'�-	/� and pixel ��������(#�2�3��	�� . The �$�
	/����� operation
returns a map image for a given  !�'�-	/� parameter. These atomic processes, which re-
ceive one input message (comprising all input values) and return one output message,
correspond to WSDL request-response operations [Martin et al. 2004]. To simplify the
explanation we will use the same names of OWL-S atomic processes to refer to WSDL
related operations.

These operations illustrate how the descriptions can be connected with taxo-
nomic ontologies. Following the OWL-S model to describe processes, each process pa-
rameter has a �"�#�4�# !�
	����'56.'�"� which specifies the class or datatype for that parameter
[Martin et al. 2004]. Notice that many ontologies may be needed to properly specify a
parameter. For instance, the �7���'�4(#�2����	�� input parameter has a type description associated
with SWEET, but its domain is defined by the �����������#�$� property, in POESIA, here denot-



ing that the only valid coordinates accepted are those from within the state of São Paulo.
The output parameter of the ���
	�*,+��#�-	��	�. operation is an integer value. The additional
 !�)����+"�4��� property of the SWEET ontology defines the nature of measured value. Notice
that we extended the OWL-S schema to enhance parameter description with additional
semantics. OWL-S specifies the need for type characterization (�"�#���# !�
	�����5 .'�"� ) which
we improved by adding semantic parameter descriptors (e.g., coverage, measures). The
parameters of the �$�
	/����� operation work the same way.

This extension to OWL-S to organize components is similar to the faceted method,
borrowed from library science by Prieto-Dı́az [Prieto-Dı́az 1989] to classify software
components. In contrast to the traditional enumerative method adopted by library science,
which uses a classification tree to organize components in categories and sub-categories,
the faceted method describes components by a set of attributes (named facets); each facet
is specified by setting a pertinent term value. We used the RDF/OWL description ap-
proach to attach a set of descriptive property values (facets) to each parameter.

It is important to note that the DCC of Fig. 2 is passive – does not embed the
program code to execute these operations. The focus in this kind of component is in the
content (i.e., the maps themselves), and the operations define how this content can be
accessed. Since the program code for the operations cannot be embedded in a passive
component, interface operations are implemented in a companion component. The asso-
ciation between the passive component and the companion is achieved with help of se-
mantic information given by terms of the DCC ontology. The companion for the � �)�"� �
	
component is the ���������
	 � �#��(������ (see Fig. 1). ���������
	 has a property value pointing
to the ���������
	 � �#�3(%����� .

2.3 The Coffee Plant Simulator Process Component – Process Centric Approach

Fig. 3 shows an example of a partial representation of a process component. This is a
software component that graphically simulates the growth of a coffee plant for a given
coffee strain, and specific weather and location conditions. Its internal structure organizes
Java binary code classes, which implement the simulator software, and related files.

To execute its job, the simulator DCC requests services from external DCCs.
There are three processes, declared in the interface, for the requested services: ���#�2�����%�1� ,
�)���1�#��� �%(%�2��	��&�'� and ���4���6	/�	� ��	�� . They actuate in two stages, being thus composite
processes. First they request a service by sending a message, containing their output pa-
rameters; next they receive the result of the solicited service in a message, whose content
must match their input parameter. This kind of composite process corresponds to a WSDL
solicit-response operation [Martin et al. 2004].

The simulator DCC uses ���%��
���%��� and �)���1�#��� �%(%�2��	��&�'� processes to request
weather data, essential to estimate the coffee plant ������� 	/��� ��	�� . In more detail, �4�#�2�����%���
provides parameters  !����	/� and �����'��(%��3��	�� (whose semantics and types are defined on-
tologically) and receives back from an appropriate service a ���%� +�� whose meaning and
type are likewise defined. The same applies to the �)�����#��� ��(#�2�#	��2��� process. Addition-
ally, the simulator DCC declares the ��	��#�'	 process, which is atomic and corresponds to a
WSDL one-way operation.

We point out two further characteristics of DCC construction. First, the inter-
face specifies processes. These may be operations implemented locally, or other compo-



Figure 3. Coffee plant simulator process component representation.

nents that have been built (reused) into the simulator. Second, parameter semantics define
process (and component) semantics. Notice that in the ���%��
���%��� and �'�����#� � �%(#�&��	��&�'� op-
erations the ���'�$�������$� of the �����'��(%��3��	�� output parameter is

� �% � �2�3��� : this component
was built to simulate the coffee plant growth under Campinas city weather conditions,
therefore it will only process values in this coverage. These constraints are used in a
discovery process.

3 Discovering DCCs
A key aspect of our proposal is how a designer discovers DCCs for reuse. DCCs’ metadata
and interfaces are specified in OWL/OWL-S, which can be used in component indexation
and searching. Domain ontologies can help in this task in three ways: (i) they organize
DCCs in taxonomic trees that can be navigated in the discovering process; (ii) ontology
concepts are used to help query construction, to disambiguate terms and find synonyms;
(iii) ontological relationships are used to rank DCCs based on their similarity with the
searched DCC.

In DCC discovery process the designer can navigate through taxonomic trees to
search for a DCC. The designer may define values of properties to characterize a desired
DCC. Alternatively, the characteristics of DCCs already in a composition guide the search
for the new one.

Let us consider a designer that wants to build a composition to graphically sim-
ulate a coffee plant growth. He/she starts by the ��� +-����	��'� DCC obtained navigating in



the DCC taxonomic ontology and selecting a DCC instance of � ���#�-	/� �2 +�����	���� class –
see Fig. 3.

The next step is to connect the plant simulator instance to a DCC that provides the
rainfall average for a given month and coordinate. Looking at the simulator specification,
the designer will next query the Web looking for a DCC that supports the Campinas
��������������� of the POESIA ontology, and the Rain �"�"������ !����� of SWEET ontology. As
often occurs in this kind of searching process, maybe no DCC exactly matches with the
query. The search engine can take advantage of the ontological semantic relationships to
find other “most similar” DCCs and rank them depending on their similarity.

Our search procedure follows three steps: (i) metadata similarity-based searching
and ranking; (ii) interface searching and ranking via inheritance relationships; (iii) inter-
face matching-based refinement and ranking. Each of these steps will be detailed in the
following three subsections.

3.1 Metadata similarity-based searching and ranking

Consider that the designer wants to retrieve a DCC via a query specified using the RDF-
like DLG. The first step looks for metadata similarity selecting DCCs whose metadata
graph is “similar to” the metadata query graph. For each query property, the search engine
verifies if the same property exists in the DCC; if not, it verifies if there is a property in
the DCC that is defined as an OWL subproperty of the query property.

The �4�#��� �)� �&���#���1	�. routine – called by the search engine – defines a value be-
tween 0 (no similarity) and 1 (equivalent concepts). �4�#��� �)� �&���#���1	�. uses ontologies
to compare a DCC property to a query property, acting in three directions to determine:
equivalent concepts, more general concepts and more specific concepts. The priority or-
der in the ranking is: equivalent, general and specific, and can be inverted depending on
the desired results. The search engine sums the ranked values of all properties.

In this comparison, two values � and � are considered equivalent if they refer to
the same concept in the ontology (equal URIs), or if they point to two concepts related
by OWL equality relationships (equivalentClass or sameAs). Moreover, � is said
to be more general than � if � subsumes � and conversely � is more specific than � .
For instance, if � is OWL subClass of � , or � is related with � through the �"�#�'	�� �
property ( � �"�#��	�� ��� ), then � subsumes � . Consider � and � vertices of a graph,
whose edges are properties. The subsumption relationship between � and � is a path
formed by one or more edges. Therefore, the similarity rank value between � and � is
inversely proportional to the number of edges which connect � and � in a subsumption
relationship.

Let us return to the designer whose query is for DCCs with Campinas ���'�$�������$�
of POESIA and Rain �������3�' !���3� of SWEET. Assume that two DCCs obtained in the
query response declare the following metadata: (DCC1) the São Paulo rainfall map, pre-
sented in Section 2.2; (DCC2) Campinas satellite images for days of acid rainfall, which
declares a Campinas ���'�$�������$� and AcidRain �������3�' !���3� .

DCC1 satisfies the search because its metadata has a �������3�' !���3� concept equiv-
alent to the query parameter on this concept, and because its �����������#�$� metadata relates
to the São Paulo concept, that in POESIA ontologically subsumes the query predicate



on Campinas: DCC1 covers a more general spatial surface than the one specified in
the query. Thus, it includes the queried Campinas coverage. DCC2 metadata has an
equivalence relationship on the query for the �7�'�����4���$� concept (Campinas) and a sub-
sumption relationship on the AcidRain concept (since in SWEET Rain is a superclass
of DCC2’s AcidRain – see Fig. 1). This means that this DCC produces a kind of rain-
fall average stricter than the one specified in the query. This result can be useful if the
designer uses a generic concept to express a set of desired sub-concepts, for instance, if
the designer wants to search for maps of any Brazilian state, he/she queries for Brazil
��������������� and expects to receive stricter coverages. For this reason the order of gener-
alization/specialization in similarity ranking can be inverted and depends on the search
context.

3.2 Interface searching and ranking via inheritance relationship

The query in the previous section can be refined by specifying, besides metadata, the kind
of output expected from the desired DCC. In this case, this output has to match the input of
the rainfall operation of the ���2 +����#	��'� DCC: a value with integer �"�#�4�# !�
	����'56.'�"� ,
whose semantics are defined by SWEET Rainfall. The similarity procedure to find
and rank similar interface specifications is the same of the previous section.

Assume that this refined query returned another DCC – DCC3 – that will be added
to the previous result (DCC1 and DCC2). DCC3 is a software component that provides
access to a remote weather repository for Campinas, and which declares an output with
an integer �"�#�4�# !�
	����'5 .��"� and SWEET PhysicalQuantity for the  !�)����+"�4���
property.

DCC3 satisfies the search because its output description has an equivalence rela-
tionship on the query for the �"�#�4�# !�
	����'5 .��"� concept (integer) and a subsumption
relationship on the PhysicalQuantity concept (since in SWEET Rainfall is a
subclass of DCC3’s PhysicalQuantity – see Fig. 1). Notice that this step enhanced
the searching process, finding additional DCCs based in finer-grained criteria.

3.3 Interface matching-based refinement and ranking

The interface specification is again used to further refine the search. For example, it is nec-
essary to verify if the components selected in the previous queries have operations which
match with the �)� +��1��	��'� component. The designer refines the ranking, asking which
of the three DCCs have an interface with an operation that matches with the ���%��
���%���
operation of the ���2 +�����	���� component. Here, interface matching is used to discard those
DCCs whose interface does not match the request. While the previous step uses interface
descriptions to increase the DCC candidates, this step can reduce the set of candidates.

Let � and � denote inputs declared in the interface of two DCCs and consider
the meaning “equivalent”, “more generic” and “more specific” of Section 3.1. We define
the follows relationships: (i) � EQ � if for each property of � , � has the same property
with an equivalent value; (ii) � GE � if for each property common to � and � , the value
of the � -property cannot be more specific than that of the � -property, and conversely

� SP � . Let now Q be the DCC specified in a query, and inQ and outQ the set of all
its inputs and outputs respectively. Let S be a DCC and inS and outS the set of its all
inputs and outputs.



We define four levels of interface matching: exact: If inQ EQ inS and outQ EQ

outS; plug-in: If inQ SP inS and outQ GE outS; wider: If inQ GE inS and outQ
SP outS. fail: Not classified in the previous degrees.

The plug-in match is a simplification of the one proposed by Zaremski and Wing
[Zaremski and Wing 1997]. This kind of match guarantees that the inS input domain is
a superset of the inQ input domain, hence, the S DCC can deal with any input of the
domain specified in inQ. The outS output domain is subset of outQ output domain,
hence, any output generated by the S DCC is within the expected results. In a nutshell,
the SDCC can be plugged in any system where Q is required, and will not compromise the
system functioning with an unexpected behavior. On the other hand, S is not equivalent
to Q.

The wider match is the inverse of the plug-in match. This is the interpretation
made by Paolucci et al [Paolucci et al. 2002] to the Zaremski and Wing plug-in match.
Here, since the outS output domain is a superset of outQ output domain, it is expected
that the S DCC can fulfill any output requested by Q. Analogously inQ, which is a super-
set of inS, can fulfill all input needs. However, it cannot be guaranteed that the S DCC
will work properly if, for example, inS receives an unexpected input.

Returning to our example, the interface matching procedure will take ���2 +�����	���� ’s
���#�2�
�-����� operation as a basis to refine and rank the DCCs search. As illustrated in the first
column of Fig. 4, to specify the query, to be used in the refining and ranking process, the
inputs are transformed in outputs and vice-versa. The other two columns of Fig. 4 display
a clip of the OWL-S descriptions of DCC1 �$�
	�*,+��%��	��	�. operation and DCC3 Weather
Repository’s �$�
	�� ��. ���&���%�1*,+��#�-	��	�. operation, both retrieved in previous steps of
this search procedure.

Figure 4. Clips of OWL-S specifications for a queried interface and DCC1 and
DCC3 interfaces.

Using the matching procedure, the DCC1 operation is classified as plug-in. Its out-
put description has an equivalence relationship on the query for both the ���%���# !�
	�����5 .'�"�
concept (integer) and the  !�)����+"�4��� concept (Rainfall). Its input description has
a subsumption relationship on the São Paulo �7�'�����4���$� concept (since in POESIA
São Paulo subsumes Campinas – see Fig. 1) and an equivalence relationship for



the ���%���# !�
	�����5 .'�"� concept (GeographicalCoordinates). The DCC3 operation
is classified as wider, following the same reasoning.

4 DCC-based Application Construction
The previous sections illustrated how to discover DCCs necessary to build a composition.
This section shows the construction of an application that is built by composing these
DCCs. Fig. 5 shows the diagram of the application. It was constructed via a composition
of five DCCs, whose purpose is to simulate the growth of a coffee plant in a region of
Campinas. Many aspects are omitted to simplify the example.

Figure 5. Composition to simulate coffee growth at São Paulo state.

Roughly speaking, an application can be constructed using the following steps: (1)
elicit requirements with help of experts and users; (2) determine basic data and processes
needed; (3) search for appropriate process and passive DCCs to be reused using the se-
mantic annotations provided by DCC description in metadata and interface sections; (4)
construct new DCCs if needed; (5) create the application, which is materialized into a
new DCC, by appropriate composition of reused and new DCCs.

In Fig. 5, DCC interfaces show the names of operations defined via OWL-
S/WSDL. The Rainfall and the Solar Radiation maps are instances of the passive DCC
of Section 2.2, and the Coffee plant simulator is an instance of the process DCC of Sec-
tion 2.3.

The dashed lines represent the connections between components, whose format
is an adaptation and simplification of WS Choreography [Burdett and Kavantzas 2004].
To understand the purpose of these lines and their labels, we will summarize some key
aspects of our model that adapt WS-Choreography concepts.



A composition is formed by a set of participants. Each participant is defined
by a set of observable behaviors, which together form a role of this participant in the
composition. A relationship is the association of two roles for a purpose. In Fig. 5 a
dashed line represents a relationship between participants (DCCs), with a boldface label
indicating its name. Each label in italics represents the role played by the corresponding
participant in the relationship.

A given component may play several roles in a composition. In this example, each
component plays a single role. Application execution starts when the user presses the start
button ( �
	��#�'	���� component), which sends a message to the ���2 +�����	���� component. The
���2 +�����	���� graphically presents the growth of a coffee seedling in Campinas.

Before the execution of the simulation, the user configured the �)� +��1��	��'� com-
ponent, selecting the number of cycles in the simulation. A cycle shows the growth of
a coffee plant in a time period and runs as follows. The simulator sends requests to the
map component, for a period of time and region, receiving the average rainfall and solar
radiation for that period and region (here, Campinas). Next, it requests that the calculator
component computes the plant’s state based in these and other parameters. This response
is used to feed the simulator’s growth rate process, showing the plant’s next stage.

5 Comparison to Related Work

This section analyzes related work. We focus on two relevant aspects: our choice for
describing DCC functionality; and the technique to search for DCCs.

5.1 Associating functionality to DCCs

Many initiatives identify the importance of representing some kind of relationship be-
tween the reused content and the program code, to: guarantee correct future content inter-
pretation in long term preservation [CCSDS 2002], enable active interaction between an
educational environment and units of educational content [McDonald et al. 2004], stan-
dardize the way of how multimedia content artifacts will be accessed by software units
[ISO/IEC 2001], and process the content on demand to produce new transformed results
[The Fedora Project team 2002].

More specifically, standards are being proposed in education
[IEEE L.T.S.C. 2002, McDonald et al. 2004], digital libraries [CCSDS 2002], mul-
timedia [ISO/IEC 2001], software development related artifacts [OMG 2004], among
others. Common problems to be faced include standards to: store the content, pack
and deploy autonomous reusable units and define metadata standards to describe these
reusable units.

Our proposal represents a step beyond, since it provides a standard ontology-based
mechanism to relate units of software and content, and provides a unified reuse perspec-
tive, suitable for both software and content, which are reused together. The tight depen-
dency between them results in a synergetic effect that increases reuse opportunity.

5.2 Searching DCCs

There are many kinds of proposals for searching for content on the Web. We follow the
trend that concentrates on using taxonomic ontologies as basis for semantic similarity.



Strategies include: the use of minimum path length between two concepts in IS-A hi-
erarchies [Rada et al. 1989], or the maximum value of information content achieved be-
tween a concept that subsumes two compared concepts [Resnik 1995]. When the search
is ontology-based, many ontologies can be involved. The ontologies related to a searched
content can be different from those related to content artifacts in the repository. The issue
of ontology mapping is treated in semantic integration research [Noy 2004]. If no map-
pings are available among ontologies, concepts related to them cannot be compared and a
mapping discovery process may be needed [Doan et al. 2003].

Our proposal considers the existence of mappings between compared concepts.
It is based on combining the work of Prieto-Dı́az [Prieto-Dı́az 1989] and Paolucci et
al [Paolucci et al. 2002], using the similarity concepts proposed by Zaremski and Wing
[Zaremski and Wing 1997].

Prieto-Dı́az proposes the faceted method, borrowed from library science, to clas-
sify software components [Prieto-Dı́az 1989]. Each facet, used to describe a component,
is associated with a scheme, which defines a list of terms that can be used as facet values.
To enhance component searching he uses a thesaurus to disambiguate terms and find syn-
onyms, and a conceptual distance graph to rank similar components, based on closeness
of related terms. Our approach is based on the same ideas. However, it uses OWL as a
unified technology for the three tasks: properties are used as facets, taxonomic ontolo-
gies are used as thesauri, and ontological relationships are used to determine component
similarity instead of conceptual distance graphs.

Zaremski and Wing [Zaremski and Wing 1997] adopt a language called Larch/ML
to specify interfaces of software components and to specify queries to search required
components. These specifications define pre-/postconditions for component execution
using first-order predicate logic. The matching between the required component specified
by a query ( * ) and the provided component with interface specification ( � ) is based on
logical relationships, like equivalence and implication. The matching between � and *
can relate pre and postconditions as separate entities, or can relate entire specification
predicates ��������� and *�������� where, for any specification � , �	��������
 �������� ��������� . On
one hand, our approach is capable of exploring the richness of ontological relationships
to compare input/output similarity, instead of logical relations. On the other hand, pre-
/postconditions can detail requirements, which are not possible in our approach.

Our work is likewise related with Paolucci et al [Paolucci et al. 2002], which is
also based on [Zaremski and Wing 1997], and adopts DAML-S for interface matching in
Web services discovery process. As mentioned before, their approach for plug-in match
follows a direction distinct from that of [Zaremski and Wing 1997]. Both approaches are
contemplated in the third step of our search procedure, which is not restricted to finding
software components or services, but extends this functionality-based search technique to
any kind of digital content.

6 Concluding Remarks

This paper presented a new approach to structure digital content in order to facilitate
its reuse and discovery using Web standards. Our work combines proposals to use in-
terface specification, taxonomic relationships between concepts and interface matching,
to enhance digital artifacts searching, using Semantic Web-based metadata and interface



specifications in our Digital Content Component model.

One of the main challenges was the specification of the functionality of each
reusable piece, which guides their discovery and combination. DCC diversity requires
an expressive and flexible mechanism, equally suitable for software components, images,
texts, videos, among others.

We can single out two main contributions of our work in this context: first, the
extension of the interface specification to express the “potential functionality” related to
any kind of digital artifact, associated to a mechanism that converts it in a “real func-
tionality” implemented by a companion component; second, a three step procedure that
explores metadata associated to DCCs, combined with the functionality expressed in their
interfaces, to enhance the DCC searching process.

Traditionally, the relationship between software components and Web services is
related to distributed components. Here, we propose that the same technology be applied
to any kind of DCC (distributed or otherwise). Semantic Web based standards are useful
to promote interoperability via components, even at the local level. Therefore, we adapt
these standards, simplifying them when needed to accommodate the local context. DCC
description is based on an adaption of WSDL and OWL-S to describe the interface at
syntactic and semantic levels respectively. This promotes reusability and facilitates the
discovering of reuse units on the Web. Ongoing work involves implementation of DCC
construction and search mechanisms. We have already developed a few experiments that
show the feasibility of our ideas.
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