Browsing and Querying in Object-Oriented Databases

Juliano Lopes de Oliveira
Ricardo de Oliveira Anido *
Departamento de Ciéncia da Computacdo

UNICAMP - BRAZIL

Abstract

We present a new interface for Object-Oriented Database
Management Systems (OODBMSs). The GOODIES! sys-
tem combines and expands the functions of many existing
interface systems, introducing some new concepts for im-
proved browsing in an OODBMS. The implementation of
GOODIES proposes a new approach to database interfaces
development: instead of being strongly dependent of the un-
derlying DBMS, GOODIES is based on the main features of
the object-oriented data model. The system design is based
on an internal model and on an external model. The inter-
nal model defines the relationships that bind the interface
to the DBMS. The external model determines the possible
interaction between the user and the interface system. This
paper describes the concepts of the design of GOODIES.
Keywords: object-oriented databases, graphical inter-
faces, direct manipulation paradigm, browsers, query tools.

1 Introduction

Offering database users a suitable interface is an old rese-
arch issue, and much work has being done towards that ob-
jective. Database Management Systems (DBMSs) are po-
werful software tools, with a large and complex set of func-
tions. The main purpose of interface systems for DBMSs is
to improve access to those functions for the whole database
(DB) user community. That, however, is not an easy task,
since different kinds of users (application programmers, da-
tabase administrators and end-users) expect different, and
sometimes conflicting, functions. As graphical workstations
become more popular, there is a strong trend to substitute
the traditional DB programming languages by the graphi-
cal interfaces, which are more suitable for the interaction
between the user and the DBMS [MvD91, Shn87, PH91].
In this paper we introduce GOODIES, a new system for
browsing and querying in Object-Oriented Database Sys-
tems (OODBMSs). This new system is a multiple window

*Research partially financed by grant CNPg-Brazil 500869/91-0
1GOODIES is an acronym for Graphical Object Oriented Data-
base Interface with Extended Synchronism.

graphical interface using the direct manipulation paradigm,
and supporting multi-media objects. The system combines,
in a single tool, the main functions for database browsing at
both schema and data levels. Another important feature of

GOODIES is to be independent from a specific OODBMS.

1.1 Graphical Interfaces for DBMSs

[GGKZ85] presents the ISIS system, a graphical interface
for the semantic data model. This system permits both
schema and data manipulation. The relationships among
the objects are displayed as lines that bind the schema clas-
ses. Data is displayed in separate windows, one window for
each object’s class. Another interface for the semantic data
model, the SNAP system, is presented in [BH86]. SNAP
provides facilities for schema manipulation and query for-
mulation. The schema is presented as a very complex graph,
where different geometric figures are used to represent dif-
ferent relationships.

A graphical interface for the entity-relationship data mo-
del is presented in [RC88]. The system permits navigation
and update of both schema and data. The interface auto-
matically creates presentations for the entities defined in the
schema, and the user can modify these presentations. Du-
ring navigation, the system operates in two modes: browse,
where the user cannot modify the information, and edit,
where update operations are allowed.

The PICASSO system [KKS88] introduces a graphical
query language for DBs. The query formulation is based on
a mouse with three buttons. The left button is used to select
attributes; the middle button is used to build predicates;
and the right button is used to choose options from the
query processing menu. Thus, PICASSO allows a graphical
definition of queries, and the queries defined in the system
are very similar to the well-known SQL’s query blocks. An
auxiliary tool allows both navigation through the results of
executed queries, and formulation of complex queries using
the results of previous queries.

KIVIEW [MDT&89] is an object-oriented system that im-
proves the access of non-expert users to a DB. It allows na-
vigation on both schema and data levels. KIVIEW is a po-
werful browsing tool because the user can save information
during the navigation process, and the saved information
can be used as a starting point for other navigations. KI-
VIEW also allows the simultaneous navigation in objects of
different classes, through synchronized browsing operations.

The LOOKS system is a graphical presentation genera-
tor for the OODBMS O2. [Alt90a] describes the primitives

provided in LOOKS to manipulate the presentations using a

programming language. The LOOKS architecture is presen-
ted in the second part of [Mam91]. Besides the LOOK pre-
sentation generator, the O2 system has an object-oriented
programming environment called OOPE [Alt90b]. Among
other functions, OOPE allows: creation, navigation and edi-
tion of classes and methods, visualization and edition of the
class hierarchy and ad hoc query execution. The association
of OOPE with LOOKS gives access to the whole set of func-
tions of the O2 system, and they are considered a complete
OODBMS interface system [BMP92].

Other existing OODBMS interface systems can be ci-
ted, although they are not as powerful as the O2 DBMS
interface system. ODEVIEW [AGS90], the interface sys-
tem for the ODE OODBMS, allows schema and data ma-
nipulation. A special function in ODEVIEW permits the
simultaneous navigation among objects of different classes
(synchronized browsing). In [Alm91] it is presented the GS-
Designer system, an interface tool that allows the graphi-
cal interactive definition of classes and relationships for the

OODBMS GemStone.

1.2 A New Interface for OODBMSs

Unlike relational databases, which share exactly the same
data model, OODBMSs are not based on a common for-
mal model. Indeed, the object-oriented (OO) data model is
composed by a set of properties and functions that database
researchers consider essential for a DBMS to be accepted as
an object-oriented system. Recently, many papers propo-
sed basic features that should be present in an OODBMS
([ABD™89], [Com90], [Jac91], [Cat91] and [BM91]). The fol-
lowing characteristics represent the common points in these
propositions:

1. To have the basic features of a complete DBMS;
2. To support complex objects and object identity;
3. To provide encapsulation;
4

. To support the class concept, and to permit inher:-
tance and class hierarchies;

5. To allow overloading and late binding of methods;
6. To be extensible and computationally complete.

Therefore, OODBMSs implement similar features, but
they do not follow an specific set of rigid rules. Due to
this diversity of features in OODBMs, interface systems for
OODBMSs have an ad hoc design, according to the specific
implementation used in the OODBMS for the fundamentals
of the OO data model.

The GOODIES system introduces a new approach to the
construction of interfaces for OODBMSs. Discarding the
idea of a strong relationship between the OODBMS imple-
mentation and the process of interface development, GOO-
DIES’s design was directed by the essential features of the
0O data model, identified above, independently of a specific
implementation of these features [O1i93].

This new approach to OODBMSs interface development
presents some advantages in comparison to the previous ap-
proach. First, it permits the validation of the basic features
that define the OO data model. A second advantage is that
it permits to verify whether a given DBMS provides these fe-
atures, that is, the new approach can be used to verify if the
DBMS is object-oriented. Finally, the new approach facili-
tates the adaptation of the interface system to a DBMS that
implements, in any way, the basic object-oriented features.

At the present stage, the GOODIES system implementa-
tion only provides reading access to the information stored in
the DBs. Thus, the system cannot be considered a complete
DBMS interface system. However, the GOODIES system
design was conceived with the objective of being extensible.
So, the information update capability can be incorporated
to the system, without changing its external model (user’s
view of the system), through a reduced number of modifi-
cations on the internal model of the system (the way the
system dialogs with the underlying DBMS).

The following sections describe the design of this new
interface system. Section 2 presents some concepts of the
internal model of GOODIES. In section 3 we describe the
way the information is represented in the system. Section 4
shows the interaction mechanism between the user and the
interface. In section 5 we explain the behavior of the browse
and query operations. Section 6 introduces some functions
that improves the system utilization. The last section com-
ments the system implementation and relates it to previous
work.

2 GOODIES Concepts

A OODBMS can control many DBs, and GOODIES defines
a DB as an schema and a set of data. The set of data
represents the DB objects, while the schema is represented
by the inheritance and composition graphs, and by a set of
methods.

2.1 Inheritance Graph

The inheritance graph is a directed acyclic graph whose no-
des represents all the schema classes. Each node is labeled
with a class name, and identical class names are not allowed
within the same schema. The nodes are also associated to a
list of methods defined for the class they represent.

There are two kinds of edges in the inheritance graph:
specialization edges and generalization edges. The genera-
lization edges are directed from the subclasses to the su-
perclasses, and they represent a generalization relationship
between a subclass (origin of the edge) and a superclass (des-
tine of the edge). In the same way, specialization edges are
directed from the superclass to the subclass, representing a
specialization relationship. It is easy to see that an edge
linking two nodes of the graph has always a complementary
edge of different kind and opposite direction.

GOODIES internal model supports the multiple inheri-
tance concept, since a node in the inheritance graph may
have an arbitrary number of both kinds of edges. Follo-
wing the basic features of the OO model, a specialized class
inherits attributes and methods from its superclasses.

2.2 Composition Graph

The composition graph is a directed graph that may contain
cycles. There are three kinds of nodes in this graph: class
nodes, constructor nodes and attribute nodes. A class node
is labeled with the name of the schema class it represents.
For each schema class there is one, and only one, class node
in the composition graph.

Constructor and attribute nodes represent the class com-
position, and they are subordinated to class nodes. An attri-
bute node 1s labeled with the type of the attribute it repre-
sents. It is possible to have duplicated labels for attribute
nodes. The possible values for attribute labels are: Simple,
Text, Image and Sound. Sub-objects are represented in the

composition graph as references to class nodes. Constructor
nodes are labeled with the type of constructor in the GOO-
DIES internal model. There just two types of constructor in
GOODIES: Tuple, used for collections of heterogeneous ele-
ments, and List, used for collections of elements that belong
to the same type (for instance, sets and list of elements).

An edge in the composition graph connects a compositor
node to a component node (it is directed from the first to
the former), and it is labeled with the name of the attribute
defined in the class type. Edges connecting nodes that are
subordinated to the same class node can not have identical
labels.

A class node origins an edge for each attribute defined in
the class type. Similarly, a class node has an incident edge
for each attribute whose type is the represented class. A
subordinated node may reference its class node, and this is
the way GOODIES allows an object to have sub-objects of
its own class.

A constructor node of type List has one, and only one,
incident edge, since each list node is subordinated to a uni-
que class node. This constructor origins also one, and only
one, edge which points to a node that defines the type of the
elements of the list. As we have already said, the GOODIES
list constructor is used for both list and set constructor of
the OO model.

For the same reason described for the list constructor, a
constructor node of type Tuple has only one incident edge.
However, a tuple node may origin an arbitrary number of
edges (one edge for each element of the tuple). Each of these
edges points to a node that defines the type of the element.

The attribute nodes represents the atomic attributes of
GOODIES, and they can not give origin to edges. These
nodes always have one incident edge, labeled with the name
of the attribute whose type is defined by the attribute node.

2.3 Primitive Operations

GOODIES interacts with a OODBMS through primitive
operations. The semantics of these operations are defined
by GOODIES, while their implementation is dependent of
the OODBMS. There is a module in GOODIES that is res-
ponsible for the primitive operations, and it is the only mo-
dule that is dependent of the underlying OODBMS. It is
important to understand that only the implementation of
the operations is variable; their semantics are specified in
the GOODIES internal model, and are independent from a
specific DBMS.

The primitive operations were designed as a minimum set
of functions that should be provided by a OODBMS in order
to grant the user access and control of the DBs. In fact, the
primitive operations may be seen as textual queries about
the schemas and about objects in the DBs. The primitive
operations defined by GOODIES are:

Get-Schema: the objective of this operation is to obtain
from the OODBMS the list of classes defined in a gi-
ven DB schema. To reach this objective, the operation
receives a DB name as a parameter. The answer pro-
vided by the OODBMS is interpreted and stored in
internal data structures of GOODIES. The result of
the operation is presented to the user through the DB
window (figure 2).

Get-Class: GOODIES uses this operation to get the com-
plete description of a given schema class. The class
and the schema are received as a parameter of the
operation. The class description is composed by the

") GOODIES - Open Database |

Use File:
system

/

[swstern |

—CGT T30

1 directory, 1 file

fhomefposfiuliano/dbms

|

Figure 1: Directory Window

class type (or composition) definition and by the lists
of superclasses, subclasses, methods and objects that
belong to the class. The result of this operation is used
to build the inheritance and composition graphs, and
these informations are displayed in the class window
(figure 3).

Get-Object: This operation has three parameters, that are
the schema, the class and the object identifier (oid)
of the desired object. A query is formulated to the
OODBMS, which should answer with the values of the
attributes of the given object. Using the inheritance
and composition graphs, GOODIES parses this answer
and presents it to the user through the object window
(figure 4).

It is obvious that both the command and the format of
the answer are dependent from the underlying OODBMS.
Thus, to adapt GOODIES to a particular OODBMS, it is
necessary to: a) determine the syntax of the OODBMS com-
mands that corresponds to the semantics defined by GOO-
DIES; b) adapt the answer interpretation function of GOO-
DIES to the format used in the OODBMS. This adaptation
process is fully described in [Oli93].

T[E) GOODIES - DB Schema Classes

{(File w) (Wiew) (Edit v) (Props v)

Classes

=
File &
Function
Mathod il

Maodule

Ohject

Person

Procedure

Program

[Programmer |
Text

—

Fhomefposfjuliane/dbmsfsystem

|

Figure 2: DB Window

r‘@ GOODIES - Class Visualization K
{(File w) (Wiew) (Edit v) (Props v)
| Type Eessoa:tup]e ‘;‘
cpfrint;
sexn:string; -

foto:image;
contato:Pessoa;

Programadar: tuple
{

name:string;
autor-de:1ist

programa:Programa;
]

endereco: text;

Super—
classes | Fessca

Sub- o
classes Estagiaric
Profissional

Methods
Insere_pessoa

Mantem_pessoa
[Insere_programader

Objects .
Juliane

Ricarde
Claudia
[kelly |

(=00 0-GLT=0 0= T30 - T20 [0

L Sistema:Programador

Figure 3: Class Window

3 Information Visualization

In GOODIES,; all kinds of information are displayed through
windows. Windows are composed by three parts: header,
body and footer. The window title (that is, the identifi-
cation of the kind of information displayed in the window)
appears in the header. The window body contains the con-
trols and the representations of the information associated
to the window. The window footer is split in two parts:
left and right. In the right part it is presented the name
or identification of the DB component that is represented
in the window’s body. The left footer is reserved for sys-
tem messages related to either the presented data or to the
operations performed on the window.

The system has four types of base windows, where the
information about schema and data (objects) are displayed.
There is also a set of auxiliary windows, which allows the
user access to the complete system functionality. GOODIES
allows an arbitrary number of windows to be displayed si-
multaneously.

3.1 Schema Visualization

Three base windows contain information about schemas: the
directory window, which provides browsing facilities at DB
level; the DB window, which presents the list of classes that
are defined in a given DB schema; and the class window,
which presents the items that define a given schema class.
The directory window provides access to the existing
DBs. This window allows navigation on the file system in
order to select DBs. The user can visualize different DBs
at the same time, since each DB selection in the directory

window opens the DB window corresponding to the selec-
ted DB. Existing DBs in a directory are visualized through
a list in the directory window. This list contains also the
subdirectories of the visualized directory. Figure 1 shows a
directory window, and figure 2 presents the DB window that
contains the classes defined in the schema of the system DB.

The third base window for schema visualization is the
class window. This window presents the definition of a class
in a DB schema, and it is composed by the following items:

e Type: a textual description of the class type defini-
tion, that is, the composition of the instances (objects)
of the class;

e Superclasses: a list of superclasses from which the
described class inherits attributes and methods;

e Subclasses: a list of subclasses that inherit the attri-
butes and methods defined for the described class;

o Methods: a list of methods associated to the descri-
bed class;

e Objects: a list of object instances that belong to the
described class, that is, the class extension. If the un-
derlying DBMS supports named objects, the objects
names appear in the list. Otherwise, the list will con-
tain a sequence of items [object 1, object 2, ..., object
n]. Each of these items represents a single object in
the class extension.

Figure 3 shows a class window that displays the class
Program of the DB presented in figure 2. The sliders on the
left of the list items allow the resizing of the representation
of a given list item with respect to the other items. The
system automatically changes the size of the items in such a
way that the complete set of items continue to be displayed
in the available space. This mechanism is useful to show
more information on important items.

3.2 Data Visualization

The three base windows described in the previous section
(directory window, DB window and class window) are used
to visualize and to navigate on the schema definitions of the
different DBs controlled by an OODBMS. The fourth base
window permits the execution of these operations on data,
i.e., on the objects stored in the DBs.

The object window contains the values of the attributes
that compose an object instance, according to the class com-
position description presented in the class window. Figure 4
shows an object of the class Program, presented in figure 3.

The objects attributes are divided, according to their
representation in the system, in the following groups:

1. Simple Attributes: these attributes are those which
can be displayed as character strings containing at
most 128 characters, and that are atomic, that is, they
are not composed by other elements. Numbers (real,
integer), boolean values and character strings * are
examples of simple attributes. These attributes are
represented directly in the object window. The attri-
butes objective and identification of figure 4 are simple
attributes.

2 character strings are not considered to be composed by elements
of type character because, in this case, the individual characters do
not have their own semantic meaning

= GOODIES — Object Visualization T
{(File w) (Wiew) (Edit v) (Props v)
ohjetivo | Interface p/ SGEDOOs |
modulos =
modulal.. i
medulo2., -
E T
—_
autores =
programadort.., d
programadeor2... -
[programador3.., T
—_

corpo_prog

telas =
telal.. &
L telaZ... ﬂ
C tela3.. hd
telad..,
telas..
o |

responsavel Programadar...
tema sound..

historico-manut |

acorrencial..,
GCorrencia.,

L Programa:GOODIES'_r

Figure 4: Object Window

. Textual Attributes: in this group are the atomic attri-
butes, as defined above, which cannot be represented
with less than 129 characters. These attributes are
displayed in auxiliary text windows, associated to the
object window that contains the textual attribute. Fi-
gure 5 shows the representation of the textual attribute
program_body, of the object presented in figure 4.

. Images: an image is a sequence of bytes that defines
the graphical representation of a picture. Images are
presented in auxiliary graphical windows, associated to
the object window that contains the image attribute.
Figure 6 shows the image window that corresponds
to the first element of the windows list of the object
presented in figure 4.

. Sounds: sound attributes are applied to audio recor-
dings, whose representation is realized by reproducing
the sound stored in the attribute. The sound and
image attributes provide facilities for storing and ma-
nipulating of multi-media objects, which are supported
by the majority of existing object-oriented systems.

. Lists: collections of elements (obtained through the
constructors set and list, for instance) that belong to
the same type are represented by a list attribute. The
elements of a list may be either simple or complex.
Simple attributes are displayed directly in the object
window as list items. If the elements of the list are not

r“g GOODIES - Text Attribute Visualization T
i))
/f Master Thesis Project
i

/ GOODIES: a Graphical Object Oriented Database
Interface with Extended Synchronization

e
-~

J duthor @ Tuliano Lopes de Oliveira

PR
Pt

/ Departamento de Ciencia da Computacan

J IMECC - UNICAMP
i

[
-~

Browse:

L GOODIES:corpo_prog'_r

Figure 5: Text Window

simple attributes, the items of the list presented in
the object window work as references to the attributes
that must be presented in auxiliary windows. It is
important to note that the list attribute of GOODIES
do not correspond directly to the type constructor list
of the OO model, since that attribute is also used to
represent sets of elements.

6. Tuples: tuple attributes represent the aggregation of
elements of heterogeneous types (in general these at-
tributes are defined through the constructor tuple).
Thus, tuples demand the creation of an auxiliary win-
dow in order to display its contents, since each tuple
element may belong to any of the defined attribute
types.

7. Sub-objects: these attributes are used to represent the
concept of complex object. According to this concept,
an object can be composed by an arbitrary set of other
objects. The sub-objects are displayed in object win-
dows associated to the base object window. There is
no difference between the construction and presenta-
tion of sub-object windows and the construction and
presentation of object windows, except that the sub-
object window is associated to the base object win-
dow, whereas the base object window is associated to
the object’s class window. This subtle difference is the
base of the synchronized browsing capability described
later in this text.

The auxiliary windows associated to the object window
follows the same scheme for attribute representation used in
the object window. Thus, it is possible to represent an arbi-
trary number of nested objects and values, and this satisfies
the directives for objects construction in the OO data model
[ABD"89]. The attributes that must be visualized in diffe-
rent windows are easily identified, because their reference
names are ended with ellipses (“...”), as shown in figure 4.

4 Interaction with the user

The direct manipulation paradigm [Shn83] was adopted
as the main mechanism for interaction with the user. This
mechanism simplifies the input actions required from the
user in order to execute an operation, and reduces both the
amount of input errors and the user typing effort.

r“g GOODIES - Picture Attribute Visualization

md])

i

GOODIEStela5

Figure 6: Image Window

The coherence between actions and results was a major
guideline of the system design, as it guarantees that the
final user will have a quick understanding of the interface
functionality.

Besides assuring coherence, the user interaction mecha-
nisms of GOODIES also provide flexibility for the user to
define the environment where he is going to work. GOO-
DIES allows the user to set up his workspace, through fa-
cilities to resize, reposition, open, close, create and destroy
windows. The system neither limits the number of opened
windows (in fact this number is limited by the Window Ma-
nager and by the available memory in the equipment), nor
imposes any kind of restriction about size or positioning of
the windows.

5 Mechanisms for Browsing and Querying

Up to this point we presented the available windows in the
GOODIES system. The next sections describe how these
windows are used to visualize different aspects of schema

and data contained in a OODBMS.

5.1 Schema Level Navigation

A working session in GOODIES is initiated with the direc-
tory window, which allows the user to choose the desired
DBs. The selection of a DB causes the presentation of a DB
window, containing the list of classes defined for the selected
DB.

Once obtained a DB window, the user can select the
schema classes that he wants to visualize from the DB win-
dow classes list. By selecting classes in this list the user
obtains the corresponding class windows, which contain the
complete description of each schema class (section 3.1 pre-
sents and explains the contents of the class window).

In a similar way, starting from the class window, the
user can proceed browsing the schema either selecting clas-
ses from the subclasses and superclasses lists, or selecting

methods from the class methods list. It is also possible to
start browsing over the class objects, through the selection
of instances in the class objects list.

The selection of superclasses or subclasses in the class
window represents exactly the same operation of selection
classes in the DB window. These operations cause the cre-
ation and presentation of the class windows for the selected
classes.

The selection of a method from the class methods list
triggers the process of creation and presentation of an auxi-
liary window, the method description window. This window
contains the textual description of the selected method, and
each method selection causes the creation of a new method
window. Figure 7 shows the presentation of a method of the
class exhibited in figure 3.

5.2 Data Level Navigation

The data level navigation starts with the selection of an
object from the objects list of a class window. This operation
causes the presentation of an object window for the selected
object, and each new selection in that list causes the creation
of a new object window. Thus, the user can work with many
instances of the same class simultaneously.

Sequencing operations are available to provide access to
different objects through a single object window. These ope-
rations are activated by the next, previous and first buttons
of the object window. The next button updates the contents
of the object window with the value of the next object in
the class objects list.

The previous button has an analog effect, except that
instead of using the next element, it uses the previous ele-
ment in the class objects list. The first button causes the
presentation of the first element of the class objects list, no
matter what object is currently being visualized in the ob-
ject window.

It is worth noting that the sequencing operations nest
and previous see the class objects list as a circular list, in

such a way that the activation of next on the last element
of this list causes the presentation of the first element, and
the activation of previous on the list’s first element exhibits
the last element of the list on the object window.

5.3 Query Facilities

Up to this point we described the basic mechanisms for na-
vigation in GOODIES. These mechanisms are also present
in many other existing database interface systems. This sec-
tion introduces the additional capabilities that improve the
browsing power of GOODIES, and which can be regarded
as a simplified querying process.

It 1s important to distinguish at this point the adop-
ted terminology: browsing (or navigation) is the process
of sequential visualization of information of a specific type;
querying is the process of selecting and restricting infor-
mation, in such a way that only the explicitly demanded
information is retrieved from the DB and presented to the
user.

5.3.1 Predicates
The first query facility available in GOODIES is the formu-

lation of predicates. The Props menu in the object window
has a “predicate...” option that creates an auxiliary window
associated to the object window. This auxiliary window is
the predicate window, where the user can define predicates
that are applied to the object presented in the associated
object window. A predicate is composed by three elements:

Attribute: An attribute of the object displayed in the ob-
ject window for which the predicate window was crea-
ted;

Operator: Either a comparison operator (=, <, >, <, >, #)
or a set operator (D, C);

Referential: Either a value or an attribute of an object
presented in the user workspace. If the referential is
an attribute, its type must be compatible with the type
of the first element of the predicate.

A predicate can also be composed by the association of
other predicates, through logical connectors (And, Or) and
the logical negation operator (Not). Parentheses can be used
to specify a resolution order for the composed predicates.

Once the predicate is defined by the user, the semantic of
the sequencing operations for the associated object window
is modified. The activation of next will not find the next

o) GOODIES — Method Visualization

i
Jf Update class super-list related to the Display window
i
void O
display_update_super_list(goodies_display_window_objects #ip) ||«
i

extern void -
object_window_resize{goodies_object_window_objects *ipl; =

extern void
object_list_initialize{goodies_display_window_objects *ipl;

L Programa:Mantem_programa'_r

Figure 7: Method Window

element of the class objects list, but the next element of this
list that satisfies the defined predicate. The same behavior
is adopted by the previous operation, that searchs the list
in the reverse order, and by the first operation, which finds
the first element, starting from the beginning of the list, that
satisfies the defined predicate.

5.3.2 Syncronization

Another query facility provided by GOODIES is the synch-
ronization of object windows. Since an object window can
have references to other objects (sub-objects), the act of
opening an object window through these references creates
a synchronization link between the complex object window
and the sub-object window. Each reference to a sub-object
can have many associated windows, forming a synchroniza-
tion tree. The synchronization mechanism guarantees that
any sequencing operation applied on an object window is re-
flected in the whole sub-tree whose root is the object window
on which the sequencing operation was performed.

A synchronization link creates a relationship of hierar-
chy between two object representations. However, a synch-
ronization link cannot be created between any two objects.
The synchronization relationship must follow the composi-
tion definition of the object’s class. An object window can
be the owner of another window in the synchronization tree
if, and only if, the object displayed in the owner window
has an attribute that references the object displayed in the
owned window.

The synchronization mechanism can be better illustrated
through an example. Let A be a class with components B
and C. Supose that the object A1l of class A is presented
in an object window. This window shows that A1 has sub-
objects that belong to classes B and C. If the user selects the
sub-object of type B, the system creates an object window
containing the object B1. In a similar way, the selection of
the sub-object of type C causes the creation of an object
window for the object C1. As a result of this process, it is
created the synchronization tree showed in figure 8.

Let A2 be the next object of A, obtained through the
application of the next operation in the object window of
A1l. At the same time of the selection of this sequencing
operation, due to the synchronization tree, the sub-objects
of A2 (respectively B2 of type B and C2 of type C) will
be displayed in the two remaining windows, automatically
(figure 9).

Therefore, a single sequencing operation can update the
presentation of several objects, through the synchronization
mechanism. It is important to note that the predicates defi-
ned for each object window continue to be verified when the
object window is synchronized with other windows. The as-
sociation of predicates with the synchronization mechanism
provided by GOODIES is similar to a query processing fa-
cility where the user selects and restricts the required infor-
mation. Only graphical query tools provide this facility, and
none of the systems cited in section 1.1 have such a powerful
mechanism for browsing.

6 Other Facilities

Besides the facilities for navigation and querying presented
above, GOODIES provides many facilities that were deve-
loped in order to allow the user to customize the system
according to his needs. These facilities are also important
for adjusting the features of the system to accomplish some
specific tasks.

"[©) GOODIES - Object Visualization |

{(File w) (Wiew) (Edit v) (Props v)

AAl]

"[©) GOODIES — Object Visualization |

{(File w) (Wiew) (Edit v) (Props v)

b [1]

3 B:B1

T GOODIES - Object Visualization |
{(File w) (Wiew) (Edit v) (Props v)

Browse:

3 c:cl g

Figure 8: Synchronization Tree

"[©) GOODIES — Object Visualization

]

{(File w) (Wiew) (Edit v) (Props v)

Browse:

AA2]

"[©) GOODIES — Object Visualization |

{(File w) (Wiew) (Edit v) (Props v)

 [2]

3 B:B2 |

"[E) GOODIES - Object Visualization |

{(File w) (Wiew) (Edit v) (Props v)

3 c:c2 4

Figure 9: Synchronization Tree after nest operation

6.1 Context Saving

The option Save Workspace associated to the Props menu
of the DB window executes one of the customization functi-
ons available in the GOODIES system. This option tells the
system to save the current workspace where the user is wor-
king. After saving his workspace, every time the user opens
a GOODIES section, the system automatically presents the
context that the user was visualizing in the moment he ac-
tivated the Save Workspace option.

The term context is used here to denote the base windows
(directory window, DB windows and class windows). The
reason for the exclusion of object windows from the context
is that objects are dynamically inserted in and removed from
the DBs, whereas schemas are not expected to be modified
often.

6.2 Visualization Level

According to the inheritance concept, the definition of a
class inherits methods and attributes from its superclasses.
Besides that, the inheritance hierarchy may have an arbi-
trary depth. If multiple inheritance is supported, a class
inherits methods and attributes from all its superclasses.
In this way, the definition of a class type may contain few
attributes and methods defined for the class, with a large
number of inherited attributes and methods. It may be the
case that the user does not want to see the complete set of
attributes and methods, but only part of them. GOODIES
offers facilities to define the visualization level of the class
hierarchy. The user can select the desired visualization level
through the following options:

Display Superclasses: an auxiliary window containing the
list of superclasses of a given class, and the user se-
lects from this list the superclasses whose attributes
and methods should be displayed. This selection up-
dates the contents of the class window items Type,
Superclasses and Methods, as well as the attributes
visualized in the object windows that belong to the
class.

Display Subclasses: in a similar way, the user can select the
subclasses that he wants to visualize, starting from
a given class window. The unselected subclasses are
eliminated from the class subclasses list of the class
window, and the instances of those subclasses are eli-
minated from the class objects list.

6.3 Attribute Selection

In an object-oriented database, the type definition of a class
may contain an arbitrary number of attributes. Choosing
the class hierarchy visualization level is often not enough to
fill the users needs, since a class that has no superclasses
can still have an excessive number of attributes explicitly
defined for it.

GOODIES allows, through an auxiliary window associa-
ted to the object window, to choose the attributes to be dis-
played. The attribute selection window contains a list of all
attributes defined for (and inherited by) the object, accor-
ding to the current visualization level. Only the attributes
selected in the attribute selection window are presented in
the object window.

In a similar way the user can choose the items that are
presented in a class window. As it was observed in sec-
tion 3.1, the items that compose the class window are five:

the textual definition of the class composition (Type) and
four lists ((Superclasses, Subclasses, Methods and Objects).

7 Conclusion

We presented the design of the GOODIES system. The basic
mechanisms for interaction with the user was described, and
it was noted that many of the system functions were adap-
ted from previously developed interface systems. In fact,
one of the main advantages of the GOODIES system is to
provide the best browsing functions from previous database
interfaces assembled in one single tool.

The window construction style follows the Openlook
[Sun90] guidelines, and the concept of dividing a complex
object representation in several windows was taken from
[MSB90]. According to that work, the natural trend to de-
pict complex information in a single representation is not
always possible, besides being frequently inefficient. In ge-
neral, it is better to display complex information (for ins-
tance, objects in a OODB) in more than one presentation,
where each presentation is tuned to a particular aspect of
the global information.

The basic GOODIES navigation mechanism was inspi-
red on the database interface system described in [RC88],
though the data model of this system is the Entity-Relation-
ship, whereas GOODIES uses the object-oriented data mo-
del. The idea of synchronized browsing was strongly in-
fluenced by the KIVIEW system concepts, introduced in
[MDT89].

The idea of using predicates to improve the navigation
process is used in graphical query systems, and the GOO-
DIES definitions of predicates is very similar to the concepts
used in the PICASSO [KKS88] system, a graphical query
system for the universal relation data model.

Finally the items that define a class window are similar
to those used in the OOPE system, described in [Alt90b]. Tt
should be noted, however, that none of the interface systems
from which GOODIES inherited features are independent
from their respectives DBMSs. This important characteris-
tic, the independency from an specific DBMS, differentiates
the GOODIES system from the interface that influenced its
design.

At the present moment, all the functionality described is
implemented in a prototype that uses a SUN SPARCstation
as platform, under the UNIX operating system. The sys-
tem applies the graphical resources of the XVIEW toolkit
[Hel90], and contains about fourteen thousand lines of code
written in C4++.

References

[ABD*89] Malcolm Atkinson, Frangois Bancilhon, David
DeWitt, Klaus Dittrich, David Maier, and Stan-
ley Zdonik. The Object-Oriented Database Sys-
tem Manifesto. In Proceedings of the First In-
ternational Conference on Deductive and Object-
Oriented Databases, pages 40-57; Kyoto, Japan,
December 1989.

R. Agrawal, N. Gehani, and J. Srinivasan. Ode-
view: The Graphical Interface to Ode. In Proce-
edings of the 1990 ACM SIGMOD International
Conference on Management of Data, pages 34—
43, Atlantic City, USA, May 1990.

[AGS90]

[Alm91]

Jay Almarode. Issues in the Design and
Implementation of a Schema Designer for an

[Alt90a]

[A1t90b]

[BIs6]

[BM91]

[BMP*92]

[Cat91]

[Com90]

[GGKZ85]

[Hel90]

[Jac91]

[KKS88]

[Mam91]

[MDT89]

[MSB90]

OODBMS. In ECOOP’91 Proceedings, pages
200-218, July 1991.

Altair. The Looks Programmer Manual. Techni-
cal Report, Gip Altair, January 1990. Printing
Revision 1.1, 9/01/1990.

Altair. OOPE: The Object-Oriented Program-
ming Environment. Technical Report, Gip
Altair, January 1990. Printing Revision 1.1,
9/01/1990.

Daniel Bryce and Richard Hull Snap:A
Graphics-based Schema Manager. In IEFE Pro-
ceedings of the International Conference on Data
Engineering, Los Angeles, USA| February 1986.

Elisa Bertino and Lorenzo Martino. Object-
Oriented Database Management Systems: Con-
cepts and Issues. IEEE Computer, 24(4):33-47,
April 1991.

P. Borras, J. C. Mamou, D. Plateau, B. Poyet,
and D. Tallot. Building User Interfaces for Da-
tabase Applications: The O2 Experience. SIG-
MOD Record, 21(1):32-38, March 1992.

R. G. G. Cattell. Next-generation Database Sys-
tems. Communications of the ACM, 34(10):30—
33, October 1991.

The Committee for Advanced DBMS Function.
Third-Generation Database System Manifesto.
SIGMOD Record, 19(3):31-44, September 1990.

Kenneth J. Goldman, Sally A. Goldman, Pa-
ris C. Kanellakis, and Stanley B. Zdonik. ISIS:
Interface for a Semantic Information System. In
Proceedings of the 1985 ACM SIGMOD Interna-
tional Conference on Management of Data, Aus-
tin, USA, May 1985.

Dan Heller. XVIEW Programming Manual, vo-
lume 7 of The X Window System Series. O’Reilly
& Associates, April 1990. Second Printing.

Mike S. Jackson. Tutorial on object-oriented da-
tabases. Information And Software Technology,
33(1):4-12, January 1991.

Hyoung-Joo Kim, Henry F. Korth, and Awvi
Silberschatz. Picasso: A Graphical Query
Language. Software Practice and Fzperience,
18(3):169-203, March 1988.

Jean-Claude Mamou. Du Disque a le ecran:
Genération D Interfaces Homme—Machine Pour
Objects Persistants. PhD thesis, Université de
Paris - Sud - Centre d‘Orsay, May 1991.

Amihai Motro, Alessandro DAtri, and Laura Ta-
rantino. The Design of KIVIEW: An Object-
Oriented Browser. In Larry Kerschberg, editor,
Proceedings of the Second International Confe-
rence on Fzpert Database Systems, pages 107—
131. The Benjamin/Cummings Publishing Com-
pany, Inc., 1989.

John Alan McDonald, Werner Stuetzle, and An-
dreas Buja. Painting Multiple Views of Complex
Objects. In OOPSLA’90 Proceedings, pages 245—
257, Ottawa, Canada, October 1990.

[MvD91]

[O1i93]

[PH91]

[RCSS]

[Shn83]

[Shn87]

[Sun90]

Aaron Marcus and Andries van Dam. User-
Interface Developments for the Nineties. [EFFE
Computer, 24(9):49-57, September 1991.

Juliano Lopes de Oliveira. Uma Ferramenta
Grafica para Navegagdo e Consulta em Bancos
de Dados Orientados a Objetos. Master’s thesis,
Universidade Estadual de Campinas - Departa-
mento de Ciéncia da Computagao, March 1993.

Thiagarajan Palanivel and Martin Helander.
Human-Factors Issues in Dialog Design. Advan-
ces in Computers, 33(1):115-171, 1991.

T. R. Rogers and R. G. G. Cattell. Entity-
Relationship Database User Interfaces. In Mi-
chael Stonebraker, editor, Readings in Database
Systems. Morgan Kaufmann Publishers, Inc.,
1988.

Ben Shneiderman. Direct Manipulation: A Step
Beyond Programming Languages. [FEF Com-
puter, 16(8):57—-69, August 1983.

Ben Shneiderman. Designing the User Interface:
Strategies for Fffective Human-Computer Inte-
raction. Addison-Wesley, 1987.

Sun Microsystems. OPENLOOK - GGraphi-
cal User Interface Applications Style Guidelines.
Addison-Wesley, June 1990. Third Printing.

