
Contract e-Negotiation in Agricultural Supply

Chains∗

Evandro Bacarin† Edmundo R.M. Madeira‡

Claudia Bauzer Medeiros‡

November 23, 2009

Abstract

Supply chains are composed of distributed, heterogeneous and au-
tonomous elements, whose relationships are dynamic. Agricultural
supply chains, in particular, have a number of distinguishing features
- e.g., they are characterized by strict regulations to ensure safety of
food products, and by the need for multi-level traceability. Contracts
in such chains need sophisticated specification and management of
chain agents – their roles, rights, duties and interaction modes – to en-
sure auditability. This paper proposes a framework that attacks these
problems, which is centered on three main elements to support and
manage agent interactions: Contracts, Coordination Plans (a special
kind of business process) and Regulations (the business rules). The
main contributions are: i) a contract model suitable for agricultural
supply chains; ii) a negotiation protocol able to produce such con-
tracts, which allows a wide range of negotiation styles; iii) negotiation
implementation via Web services. As a consequence, we maintain
independence between business processes and contract negotiation,
thereby fostering interoperability among chain processes.

1 Introduction

A supply chain is a network of retailers, distributors, transporters, storage
facilities and suppliers that participate in the sale, delivery and production

∗Research financed by Brazilian Science Foundations CAPES, CNPq and FAPESP.
†bacarin@dc.uel.br, Computer Science Department, University of Londrina, BRAZIL.
‡{edmundo,cmbm}@ic.unicamp.br, Institute of Computing, UNICAMP, 13084-971

Campinas, SP - BRAZIL.

1

of a particular product [MZ02]. It is composed of distributed, heterogeneous
and autonomous elements, whose relationships are dynamic. Supply chains
present several research challenges, such as recording and tracking B2B and
e-commerce transactions, designing appropriate negotiation protocols, pro-
viding cooperative work environments among enterprises, or coordinating
loosely coupled business processes [Ars02].

Trading relations inside a specific supply chain comprise a huge amount of
commercial transactions and are subject to legal commitments varying from
federal and international laws to particular contracts between trading part-
ners. The use of computational means to perform commercial transactions
is increasing steadily. This implies that contracts should ideally be replaced
by their electronic counterparts (e-contracts), and live negotiation should be
performed by software agents (e-negotiation). The negotiation process de-
velops in the context of a business process. This raises several interesting
problems: i) the efficient execution of a supply chain depends on the com-
mitment of most of its multiple agents – multi-partner negotiation is a must;
ii) even though supply chain partners are autonomous and heterogeneous,
they must agree on concepts and names; iii) a supply chain demands diverse
styles of negotiation – some issues may be resolved through ballots, others
through auctions, or through bilateral bargaining, and so forth.

The result of an e-negotiation process is an e-contract to be enacted, in
the context of an existing business process. During this phase, partners may
want to know if the contract is being enacted properly, that is, whether the
terms of the agreement are being satisfied. This raises a number of issues.
Not only the contract, but data about its enactment should be stored and
retrieved. During the enactment phase, agreements may be changed through
a renegotiation process. This requires contract version management, and
causes consistency problems among contracts. All of these are open problems
pointed out in the literature.

This paper presents an e-negotiation framework that attacks several of
these issues, focusing on problems raised by business processes within agri-
cultural supply chains. Such chains have a number of characteristics that
distinguish them from other kinds of supply chains – e.g., they must obey
strict governmental regulations; they deal with products that are perishable
and may influence health conditions; they may be subject to cultural or
even religious contexts. The framework is centered on linking contracts and
their negotiation to the underlying business processes, rules, and services.
The connection between contracts and processes is established in such a way
that they can evolve independently, without requiring the update cascades
common to this sort of situation. The framework comprises: i) a model for
agricultural supply chains; ii) a negotiation protocol suitable for different

2

styles of e-negotiation; iii) the definition of an e-contract structure; iv) the
design and implementation of an e-negotiation framework based on Web ser-
vices; v) the design and implementation of an enactment infrastructure. The
paper’s contributions concern issues (ii) – Section 4, (iii) – Section 3 and (iv)
– Section. 5.

The following motivating example will be used throughout the paper. Sky
Food is a catering company that delivers meals to airlines. It has established
a number of contracts with its clients and suppliers, which also have contracts
with other parties. The example concerns milk products, and the paper will
discuss two of its several contracts. The first is a two-party contract Sky Food
has established with a dairy (supplier) that will provide pasteurized milk and
other dairy products. The dairy, in turn, is the client of a milk cooperative.
However, the milk is not produced by the cooperative, but by its member
farms. Thus, the second contract analyzed is a multiparty agreement that
the cooperative has established with the farms it represents.

This scenario poses several interesting problems in contract negotiation
and enactment. For instance, though the two contracts are independent,
their enactment interferes with each other. Moreover, each farm has daily
quotas to meet, to enable the cooperative to fulfill its contract with Sky Food.
If a farm fails to meet its quota, the others are expected to step up their
production (internal renegotiation of the multiparty contract). Additionally,
eventual geographical conditions (e.g., a drought) may affect overall milk
production requiring renegotiation of both contracts. These and other issues
will illustrate the presentation of the framework.

The paper is organized as follows. Section 2 describes our model for agri-
cultural supply chains and an architecture induced by this model. Section 3
describes the organization of our e-contracts and Section 4 describes the e-
negotiation process to produce such a contract. Section 5 discusses some
implementation issues and a few basic interactions scenarios, such as ballots,
auctions, and quota negotiation. Section 6 discusses related work, mainly on
contracts and negotiation. Finally, Section 7 concludes the paper.

2 The Model and Basic Architecture

Our framework is based on a specific model for supply chains (see [BMM04]).
This model specifies a chain from basic elements, and then progressively
constructs their interacting and cooperative processes. The basic elements
are Actors, Production, Storage and Transportation. Regulations, Contracts,
Coordination Plans and Summaries are elements needed for providing chain
dynamics.

3

A Production Element encapsulates a productive process that uses raw
material extracted from its own environment or inputs obtained from other
components and transforms such inputs into some product that is passed
onwards to the chain.

A Storage Element stores products or raw material and a Transporta-
tion Element moves products and raw material between production, storage
components and other transportation components.

Regulations are sets of rules that regulate a product’s evolution within the
chain. These rules specify constraints, such as government regulations, and
quality criteria. Actors are software or human agents that act in the chain.
They may be directly or indirectly involved in the execution of activities.
Summaries are elements introduced for traceability and auditability. They
are similar to database logs, recording chain events.

Interactions among chain components are organized by means of Coordi-
nation plans and negotiated via Contracts. The latter delineate patterns of
interaction among the partners, being detailed in the paper.

A Coordination plan is a set of directives that describes a plan to execute
the chain, coordinating the activities inside an agent or among several chain
agents. These activities can be seen as business processes. Plans indicate,
among others, sequences of chain elements to be activated, and actors re-
sponsible for monitoring these sequences. They trigger activity execution,
execute contract clauses, synchronize parallel activities and control the over-
all product flow. A chain usually has several plans, that are organized and
may interact in different ways.

Figure 1 illustrates the main concepts of our model, showing a simpli-
fied chain for the motivating example (Section 1). The chain is composed of
producers (e.g., Sky Food), means of transportation (e.g., Transp 1), storage
facilities (e.g., Airport Storage), and other actors that perform complemen-
tary activities (e.g, Lawyer 1). Regulation 1 is a set of rules describing the
quality criteria that the milk delivered by the Dairy must comply with in
order to be accepted by Sky Food. The figure shows two contracts, one of
which (Contract 1), between the Dairy and Sky Food, will be discussed sub-
sequently. Its clauses include parameters such as price, date and regulations
to be obeyed (e.g., Regulation 1). The chain has several summaries that pro-
vide product, process and service traceability – see [KMBM07]. Plans (e.g.,
Coord Plan 1) are executed by coordination managers, which send messages
to chain elements to perform a set of activities (e.g., asking the Cooperative
to produce milk, or Transp 1 to transport milk from the Cooperative to the
Dairy).

Production, Storage and Transportation elements can be simple or com-
plex. Complex elements are those that can be decomposed into other ele-

4

Figure 1: Simplified supply chain

ments, e.g., the Cooperative is composed of several member farms (which are
Production elements), and a number of storage and transportation facilities.
Regulations may be atomic or complex, containing other regulations within
them.

The model has been mapped to a Web service architecture, whose com-
ponents directly reflect the model’s elements. The architecture has man-
agers for: coordination (CM), negotiation (NM), regulations (RM) and sum-
maries (SM), that respectively handle coordination plans, contract settle-
ment, regulations and summaries, all mentioned previously. Distinct kinds
of repositories are needed to store information in: chain Participants (the
basic elements), Products, Regulations, Contracts and Summaries. For more
on interactions among plans and their composition and encapsulation see
[BMM04].

3 Contracts

Our e-contract is an instance of a contract model and is constructed by a
negotiation process. Basically, it is composed of a set of clauses and some
auxiliary information that makes it meaningful and supports its execution.

The life cycle of a contract starts with the construction of a contract
model, which has a specific purpose (e.g., furnishing of milk by a supplier
to Sky Food). Contract models are designed by human actors and stored in
specific repositories. They indicate the business rules that must be obeyed
when the contract is enacted.

This section presents our proposal for contract specification. Section 3.1
describes our specific model, containing a draft of the contract’s clauses with
blanks. Whenever two or more partners want to establish a contract, they
choose a contract model that better fits their objective. Their respective
negotiators (NMs) interact, according to the negotiation protocols proposed

5

in Section 4 filling the blanks. If the negotiation succeeds, an actual contract
instance is produced – Section 3.2. It represents the agreement among the
partners and contains the business processes that are to be activated when it
is enacted. Thus, a model can originate several instances. Both model and
instances are written in XML.

Enactment comprises carrying out the contract’s clauses individually and
in a proper order. Preconditions are verified before the clause execution. If
they hold, a business process associated with the clause is activated. After
the business process has ended, postconditions are checked.

Logs are produced during contract enactment, being used to verify con-
tract fulfillment and to help chain traceability. Conditions may change dur-
ing the enactment. This may demand the renegotiation of the contract. The
renegotiation process is quite similar to the primary negotiation, but adds
new version control and logging challenges. Discontinued contracts cannot be
enacted again, but must be stored with the produced logs for legal purposes.
Versioning and log-related issues are outside the scope of the paper.

3.1 The Contract Model

Our contract model is a template written in XML. Figure 2 shows a graphical
representation of its structure and Figure 3 shows an excerpt of an actual
XML document. The graphical representation emphasizes the nesting of the
contract’s sections and the information needed to construct a final instance:
only the information in the gray rounded boxes. Broadly speaking, the con-
tract model has two sections (Figure 2): property declaration and template.
The property declaration section lists all the properties that can be negotiated
and some specific information about them. The template section contains a
draft for the contract. The syntax of its content is similar to that of the final
contract.

A contract model can be seen as a contract draft with blanks – properties
not yet bound to a value. Thus, at its core, the negotiation process consists
of agreeing on values (or ranges of values) for each contract property, thereby
filling these blanks. At the end of the negotiation, most parts of the contract
model (the ones in rounded gray boxes in Figure 2) are used to make up
the final contract: mandatory and optional properties are condensed in a
single properties section in the final contract, the other gray boxes are copied
almost verbatim to the final contract.

The properties. There are two kind of properties: contract and nego-
tiation. The former are those used in the final contract. The latter guide
the negotiation process itself and are not present in the final contract. A
property declaration in the contract model defines what can be negotiated,

6

whereas in the final contract it determines what can be performed.

Figure 2: Contract model schematic representation

Both kinds of properties may either be negotiated or have a predefined
value within the model. Contract properties in the model can be mandatory
or optional. Mandatory properties must be negotiated, in contrast with the
optional ones. A negotiation can only be committed after all mandatory
properties are negotiated.

<cmodel>

<properties>

<negotiation>

<p name=“approval-threshold” value=“50” type=“xs:decimal”/>

<p name=“max-wait-delay” value=“?” type=“xs:nonNegativeInteger”
default=“5”/>

</negotiation>

<mandatory>

<p name=“price” type=“xs:float” value=“?” dynamics=“static”/>

<p name=“amount” type=“xs:integer” value=“?” dynamics=“static”/>

<p name=“deliver-time” type=“xs:time” value=“?” dynamics=“both”
range=“07:00:00,18:00:00” constrained=“narrow”/>

<p name=“gis:place” type=“xs:string” value=“?” dynamics=“dynamic”
enum=“maringa,campinas,londrina” constrained=“fixed”/>

</mandatory>

<optional> </optional>

</properties>

<template> </template>

</cmodel>

Figure 3: An Excerpt of a Contract Model, Focusing Properties

Figure 3 shows an example of properties. Property values can be prede-
fined in the model, and thus constant for all contract instances (e.g., approval-

7

threshold); alternatively, when assigned to “?”, they are not bound to a value
e.g., price). The valid values are defined by the type of the property, and re-
stricted by range or enum.

A value can be bound to the property: a) when the negotiation starts;
b) by the negotiation process; c) after the negotiation has ended, when the
contract is carried out. In the first case, the value is assigned in the contract
model and cannot be changed. The second case is the most common one, in
which negotiators agree upon a value for a property. If it is a negotiation
property, it will be constant until the end of the negotiation. If it is a contract
property, this value will be used in every implementation of that contract.
Finally, some property values are assigned only at runtime. This happens for
two reasons: a) the negotiators have decided not to establish a fixed value,
but agreed on a range of valid values to be assigned at execution time; b) the
contract model has established that the value must be assigned only during
the implementation of the contract.

A property has two attributes to model all these behaviours: dynamics
and constrained. The dynamics attribute has three possible values: “static”,
“dynamic”, “both”. The first option means that the property must have a
constant value at the end of the negotiation (e.g., price). The second (e.g.,
gis:place) means that the value of the property will be defined when the
contract is carried out. The negotiators can, at most, define a range of valid
values for the property. The last option (e.g., deliver-time) means that the
negotiators may agree upon a value for the property (static assignment) or
postpone the definition to execution time (dynamic assignment).

The constrained attribute has two possible values: “fixed” or “narrow”.
The first (e.g., gis:place) forbids any modification on the property constraints
(range and enum). They must be obeyed as they are declared in the contract
model. The second (e.g., deliver-time) allows the negotiation to narrow the
range of the constraints declared in the contract model, that is, the set of
valid values is made smaller.

Properties in the negotiation section have standard names and a defined
domain of values. For instance, the value “50” for property approval-threshold
means that, during the negotiation process, an issue submitted to ballot will
be approved if it receives more than 50% of the votes. Undefined negoti-
ation properties (“?” value) must have their values negotiated at the very
beginning of the negotiation.

If a mandatory or a negotiation property was not negotiated, the default
value is assigned to it (e.g., property max-wait-delay).

The template. The template section contains a draft whose syntax is
very similar to that of the contract. It has a number of sections that are also
present in the final contract. Basically, the content of this section and the

8

negotiated properties are used to generate the contract instance. Thus, the
template section is in the next section.

3.2 Contract Instance

A contract is based on a contract model (Section 3.1). The main sections
are: setup, info, partners, properties, and clauses. Excerpts of these sections
are shown through examples.

The setup section. Contains low level information necessary to the
contract implementation, such as: ontologies, paths, libraries, etc. Ontologies
play an important role in the negotiation process. They allow the negotiators
to understand the meaning of each clause and the relationship among the
properties being negotiated. There is a default ontology, and partners can
declare other ontologies. In the latter case, terms are preceded by a prefix
that identifies the ontology, similar to namespaces within XML documents.

The info section. Contains “administrative” information about the
contract, such as validity, or the contract model it was originated from.

The partners section. A contract establishes rights and obligations
among the partners. In general, a binary relationship establishes a duty to
a partner and a right to the other partner. However, our contracts allow
relationships of higher cardinality.

A partner (Figure 4) can refer to a person (e.g., John Doe is the manager
of Sky Food) or to a role (e.g., the CEO of the Dairy). The identity of a
partner is checked against a Participant Repository (Section 2). The address
of the repository is a URI. Participants can also be identified by a short name
(abr).

<partners>

<person name=“john-doe” abr=“SF” directory=“http://www.x.y/pd1”/>

<role name=“ceo-dairy” abr=“DRY” directory=“http://www.z.k/pd2”/>

</partners>

Figure 4: Contract Partners

The properties section. This section is directly derived from the prop-
erty declaration in the contract model (Section 3.1). Properties are value
containers (like variables or constants). Their values may be fixed (static) or
defined during contract enactment (dynamic). Figure 5 presents the property
section derived from the contract model of Figure 3. Note that the value of
property price was agreed to be 0.50, while property deliver-time was kept
dynamic, but its range was narrowed. Property types are declared in the

9

contract model. Attributes dynamics and constrained are only used in the
contract model. References to ontologies disambiguate property names (e.g.,
property place belongs to the ontology identified by the prefix gis). Type
names are also described by ontologies.

<properties>

<p name=“price” type=“xs:float” value=“0.50”/>

<p name=“amount” type=“xs:integer” value=“200”/>

<p name=“deliver-time” type=“xs:time” value=“?”
range=“07:00:00,09:00:00”/>

<p name=“gis:place” type=“xs:string” value=“?”
enum=“maringa,campinas,londrina”/>

</properties>

Figure 5: Examples of Properties

The clauses section. The contract is made from a set of clauses, and is
fulfilled when the clauses are executed properly. Each clause (e.g., Figure 6)
is identified by a unique identifier within the contract (attribute id) and has
a number of sections: an action name, a text, a dependency expression, the
regulations that must be enforced by the execution of the clause, a service to
be executed, a list of authorized and obliged partners.

The action name describes the task that will be performed when the
clause is executed. The text dictates rights or obligations to the partners.
It contains sentences intending to be both human-readable and machine-
processable. Basically, the text contains nouns, verbs and properties. Verbs
establish duties among partners and nouns detail them. The properties must
be previously declared in the section properties. When executed, each em-
bedded property is replaced by the value that was assigned in the property
declaration or defined at execution time. Property references embedded in
the text are prefixed by the “#” mark. Property references may be used all
over the contract wherever applicable. For instance, the text section of Fig-
ure 6 refers to properties amount, price and place, indirectly, to partners SF
and DRY. The word liter is defined in the default ontology, whereas deliver
is defined in the ontology identified by ecom. Suppose that there is another
clause (id=9) that states that any milk delivered must be paid within a pe-
riod of three days. The milk referred to in clause 10 is the same as the one
in clause 9. This is shown by the notation “milk[9]”.

The depends section contains a boolean expression that determines if
the clause may be applicable. In this example, the condition checks if Sky
Food has no debts. If this expression is true, the coordination plan A, stored
in a repository whose address is “http://www.coop.com/plans” is allowed to

10

be executed by the coordination manager at “http://www.coop.com/coop cm”,
all of which is informed in the service section. The expression may contain
arithmetic, relational and boolean operators, as well as external function
calls. The coordination plan may demand some parameters. Properties or
constants can be assigned to them (e.g., the value of the property price
is assigned to the parameter MilkPrice, Figure 6). Conversely, the section
enforces is a postcondition that lists the regulations that must be enforced
by the execution of the clause.

The enactment of a clause may be started by any of authorized or obliged
partners. An obliged partner must accomplish the state of affairs intended
by the clause. In the example, the milk must be delivered by the dairy
(represented by its CEO). An authorized partner has the right to receive the
effect intended by the clause. In the example, John Doe (representing Sky
Food) has the right of receiving the milk. Both obliged and authorized items
are optional, but at least one of them must be present. Note that if only the
authorized item is present, it means that the clause conveys an optional right
to the listed partners, but none of them is obliged to enact the clause.

<clause id=“10”>

<action> Milk deliver </action>

<text>

@OBLIGED will ecom:deliver #amount liters of milk[9]
at R$ #price liter to the branch of @AUTHORIZED at #place.

</text>

<depends> no debt(@SF) </depends>

<enforces> <r> Regulation 1 </r> </enforces>

<service cmaddress=“http://www.coop.com/coop cm”
cpaddress=“http://www.coop.com/plans/” idplan=“A”>

<par name=“MilkPrice” value=“#price”/>

<par name=“MilkAmount” value=“#amount”/>

<par name=“DeliverPlace” value=“#place”/>

</service>

<authorized partners=“@SF” mode=“all”/>

<obliged partners=“@DRY” mode=“all”/>

</clause>

Figure 6: A Contract Clause

The example shows a binary relationship: the Dairy must deliver milk to
Sky Food. However, our contracts allow relationships with higher cardinality.
Note that both authorized and obliged items may contain a list of several
partner names. In this case, the attribute mode determines how many of the
partners in each list are supposed to perform the task or to be the clause
beneficiary. The attribute mode has three possible values: “one”, “all” or a

11

positive integer “n”. The value “one” means that exactly one of the obliged
(authorized) partners must fulfill the duty (right). Similarly, “n”, means
that, at least, n obliged (authorized) partners must fulfill (should receive)
the duty (the right). The value “all” has analogous meaning. The names
@AUTHORIZED and @OBLIGED can be used in the text item standing for
the partners listed in the respective items, according the respective modes.
For instance, Table 1 shows two combinations of mode assigment.

Obliged Authorized Effect

one all Exactly one of the obliged partners must deliver the estab-
lished amount of milk to each authorized partner. Thus,
the obliged partner will deliver n*amount liters of milk.

all one Each obliged partner must deliver amount of milk to one
of the authorized partners. Some authorized partners may
receive i*amount, while others may receive no milk.

Table 1: Examples of mode combination for Figure 6

4 The e-Negotiation Process

This section describes the negotiation process. It presents a negotiation
protocol that can be used for various negotiation styles, e.g., bargaining or
auctions. Section 4.1 gives an overview of how negotiations are set up; the
subsequent sections detail the negotiation process itself.

4.1 Organization of the Negotiation

Negotiators are instances of the Negotiation Managers (NM) of our architec-
ture (Section 2). One of them is the leader. A Notary actor is responsible
for given bureaucratic chores, e.g., constructing the final contract, or acting
as a trusted third-party (e.g., to control ballots).

These players exchange information within a negotiation process through
asynchronous messages. The messages may be peer-to-peer or broadcasted.
Contract negotiation is directed by the contract model (Sect. 3.1) and has
several phases:

1. Negotiation announcement: the Notary announces a new negotiation
process or renegotiation of an existing contract. The interested parties
register for this process.

12

2. Leader determination: the leader of the negotiation is chosen. The
leader may be predefined in the contract model (the notary just an-
nounces it to all negotiators) or chosen by means of an election proce-
dure – in our case, similar to [GM82].

3. Objective announcement: the leader announces the objectives of the
negotiation, such as: minimize (or maximize) a property, or enforce a
regulation.

4. Negotiation set up: some parameters that guide the negotiation process
are set up by means of property negotiation.

5. Restriction announcement: all negotiators may broadcast their restric-
tions on what is going to be negotiated. For instance, a restriction can
be “I accept Price> $10 only if delivery interval < two days”.

6. Core negotiation (see Sec 4.2): the contract negotiation takes place.
Negotiators exchange messages trying to agree upon property values,
through a cycle of proposals and counter-proposals or through ballots.

7. Commit attempt: after the parties have reached an agreement, the
Notary verifies if there is any pending issue that prevents the contract to
be commited, such as, all mandatory properties must be negotiated. If
no problem is found, the negotiation is commited and the final contract
can be written down. Otherwise, the negotiation returns to the state
just before the commit attempt.

8. Contract (re)construction: after the (re)negotiation is commited, the
contract is (re)written by the Notary and is available to be signed by
the partners.

4.2 Core Negotiation

Core negotiation involves settling values of properties. Contract or negotia-
tion properties may be negotiated by means of two basic mechanisms: request
for proposals (RFP) and offers. These basic mechanisms can be combined to
provide the various styles of negotiation in a supply chain.

A negotiator A may propose to negotiator B a value (or range of values)
for a given property P using an offer. B can accept, reject or make a counter-
offer. They then engage in a cycle of counter-offers until they agree or give
up. Conversely, negotiator A may request a proposal from B using an RFP.
B answers the RFP sending A an offer that complies with the restrictions of

13

the RFP, and they may engage in cycles of counter-offers. An RFP or an
offer may cover to several properties.

An offer (or an RFP) may be submitted to a ballot – see example in
Section 5.2.2. The notary broadcasts the offer (RFP) and the list of allowed
votes – typically agree or not agree, for offers, or a list of several options, for
RFPs – and waits for the votes. The negotiators send back to the Notary
their votes (choices). The Notary counts the votes and broadcasts the result.
Negotiators with veto power are listed in the contract model – instead of
sending back a vote to the Notary, they may veto the subject. In this case,
the ballot is cancelled.

Property values may also be negotiated through an auction – see example
in Section 5.2.1. In this case, the notary broadcasts an offer or an RFP and
collects all answers for them. Then, the leader chooses the answer it considers
the best one. Counter-offers are not allowed.

Finally, some negotiators may agree on exchanging information during
the negotiation process, bypassing the leader or the Notary – e.g., to estab-
lish mutual consensus during the negotiation process. For instance, before
answering the RFP, they develop a private negotiation and respond iden-
tical offers to the leader. This is useful in case of composition (e.g., the
Cooperative and its farms) or for strategic alliance among partners.

4.3 Main Protocol Messages

Our negotiation protocol is specified by means of a context-free grammar
and state diagrams. The latter describe the steps a negotiator follows after
sending or receiving a message.

Figure 7 presents an excerpt of the grammar. Non-terminals are capital-
ized, terminals are in bold, � means another rule for the same non-terminal,
[A] means that A is optional, A+ means one or more A.

The figure shows that the negotiation of a property can be achieved by:
(i) making an RFP (line 1), (ii) making an offer (line 2), (iii) issuing a ballot
(line 3) or (iv) performing an auction step (line 4). Offers and RFPs are
the main negotiation mechanisms. Ballots and auctions use them. These
four negotiation primitives may be combined to develop several styles of
negotiation.

A negotiator announces an RFP communicating it to one or more nego-
tiators, who will send back a response (line 5). Communicating a message
means sending it to a single partner (line 6) or broadcasting it to all negotia-
tors (line 7). The message that communicates the RFP is “new rfp rfp” (line
8). The terminal symbol “rfp” conveys all information about a specific RFP.
This message can optionally disclose the intention of the negotiator, e.g.,

14

1. NegotiateProperty::= MakeRFP

2. � MakeOffer

3. � IssueVoting

4. � Auction

5. MakeRFP ::= Communicate RequestForProposal

ReceiveRfpResponse

6. Communicate::= send Dest

7. � broadcast

8. RequestForProposal::= new rfp rfp [Obj]

9. ReceiveRfpResponse::= (RfpResp [MyResp])+

10. RfpResp::= ProposalResponse

11. MyResp::= ProposalResponse

12. RfpId::= rfp id

13. ProposalResponse::= send Dest proposal agree Offer

14. � send Dest proposal no agree Offer [Reason]

15. � send Dest new offer Offer [Obj]

16. � send Dest no offer RfpId

17. � Wait ProposalResponse

18. Wait::= send Dest wait [WaitDuration] [Reason]

Figure 7: Excerpt of grammar for property negotiation

minimizing the #price property. Offers are made in a similar way (gram-
mar rules were omitted). If the partner agrees to the offer, it sends back a
“proposal agree” message (line 13); if it disagrees, it sends back a “proposal
no agree” message (line 14); if it answers an RFP or makes a counter-offer,
it sends back a “new offer” message (line 15); if it does not intend to answer
an RFP, it sends back a “no offer” message (line 16); finally, it may send a
wait message informing that it will postpone the answer (lines 17, 18).

Figure 8 shows a possible sequence of messages induced by this excerpt.
In this example, the text between triangles represents an RFP and between
squares represents an offer. This is not the actual syntax; only the main pa-
rameters are shown. RFPs and offers share parameters that allow correlating
them. This figure shows that a negotiator (presumably N1) has broadcasted
an RFP asking for a proposal for property price, considering that property
amount has value 20. The RFP imposes that a proposal for price must be less
than 10. Three negotiators answered the RFP, sending back an offer each,
with different values for price. Figure 9 shows a short bargaining process,
where N2 agrees to N1’s counter-offer.

Figure 10 shows the steps followed by the leader after it has sent an RFP.
The transitions are labeled with the message sent or received. The leader
collects offers from other negotiators until all expected offers have arrived or

15

broadcast new rfp �price?<10; amount=20�

send n1 new offer 2price=8; amount=202

send n1 new offer 2price=9; amount=202

send n1 new offer 2price=7; amount=202

Figure 8: Example of price survey given an RFP

send n2 new rfp �price?<10; amount=20�

send n1 new offer 2price=9; amount=202

send n2 new offer 2price=8; amount=202

send n1 proposal agree 2price=8; amount=202

Figure 9: Example of bargaining given an RFP

a fixed length of time elapses. Next, it analyzes all received offers, using the
Offer Received diagram (not detailed), and may accept the offer, reject it
or make a counter-offer. In this diagram, the prefix “e:” means an internal
event, e.g., “e:timeout” means that the leader has not received any offer
within a specific time.

Figure 11 shows the negotiator’s steps after receiving an RFP. First, it
analyzes the RFP and may send back an offer, inform the partner that it will
not make any offer, or that it will delay the answer. Prefix “s:” means that
the negotiator has sent a peer-to-peer message.

Figure 10: Leader’s state after issu-
ing an RFP

Figure 11: Negotiator’s state after
receiving an RFP

Note that the communication primitives presented in Figure 7 allow sev-

16

eral styles of negotiation. This flexibility is important in the context of busi-
ness processes within agricultural supply chains. For instance, a contract
model may contain a clause with a property whose value must be agreed on
by most of the negotiators (e.g., a maximum production quota for any farm
of a cooperative). This is resolved by a ballot. Another clause of the same
contract may have a property that must be disputed by the negotiators. This
is resolved by auctions, and so forth. Sections 5.2.1, 5.2.2, and 5.2.3 show a
few examples of different negotiation styles.

5 Some Implementation Issues

Our framework is implemented by Web services, which are suitable for han-
dling heterogeneity, distribution and autonomy of supply chain partners. The
messages exchanged among negotiators are mapped directly to Web service
SOAP messages. When a message is received by a negotiator, it activates a
Web service operation. Our framework specifies a number of operations that
enable the reception of the messages needed by the negotiation process. The
operations are organized into interfaces.

5.1 Interfaces

5.1.1 Negotiator Interfaces

Every negotiator has interfaces to receive messages from other negotiators or
from the Notary. Interfaces may relate to (1) establishing a negotiation, (2)
negotiation setup, or (3) core negotiation.

Establishment of the negotiation. The Advertisement interface receives
messages concerning a new contract negotiation or about the renegotiation
of an existing contract. An interested negotiator must register to the ne-
gotiation with the Notary. The Negotiation Coordination interface receives
messages from the Notary concerning the acceptance of that negotiator. This
interface follows the WS-Coordination specification [IBM06].

Negotiation setup. The Leader Election interface receives messages con-
cerning the election of the leader. The Announcement interface receives
messages from other negotiators announcing their restrictions and objectives
for a negotiation.

17

Core negotiation. The Proposal and PeerNegotiation interfaces receive
messages concerning exchange of proposals. They are complementary inter-
faces by which negotiators may reach a “personal” agreement. The Voting
interface receives messages concerning a ballot process. The negotiator is
asked to vote on some issue and receives the result of the ballot through this
interface. Through the Leader interface, the leader receives some specific
demands.

5.1.2 Notary interfaces

Similarly, the Notary has interfaces related to the establishment of the nego-
tiation. Through the Negotiation Activation interface the notary is requested
(typically by a Coordination Manager) to perform the initial setup of a new
negotiation. It follows the WS-Coordination specification. The Registration
interface is responsible for receiving messages from the negotiators concern-
ing their registration to a negotiation process. This interface also follows the
WS-Coordination specification.

The Leader Election interface is related to the setup of the negotiation.
It receives messages from the negotiator who wants to apply as a candidate
in the leader election.

Finally, the Notary helps the core negotiation process by the following
interfaces. The Negotiation and Leader interfaces provide operations needed
during the negotiation process, such as, commit or cancel the negotiation,
and through the Ballot interface the notary is asked to conduct a ballot and
to receive the respective votes.

5.2 Styles of Negotiation

This section discusses a few of the possible negotiation styles supported. In-
teractions are enacted by execution of operations of suitable interfaces. The
following scenarios show the messages exchanged among the participants of a
negotiation and the operations invoked by them. For instance, the first mes-
sage sent in Figure 12 shows the Sky Food NM sending the message “first
answers” to the Notary. This message activates the Notary’s “firstAnswer-
sToProposal” operation. Only the main parameters are shown. Acronyms
were adopted for brevity’s sake. The names of the invoked operations are
prefixed with a string that identifies the interface which the operation be-
longs to. Table 2 shows the meaning of the prefixes. Most of the interfaces
are related to the negotiators, a few with the Notary.

18

lif Leader interface
pnif PeerNegotiation interface
pif Proposal interface
vif Voting interface

nbbif Ballot interface (notary)
nlif Leader interface (notary)

Table 2: Interface acronyms

5.2.1 Auctions

Recall Figure 1. Sky Food wants establish a contract with the supplier that
offers the cheapest milk. Two dairies have entered the negotiation: SDA and
SDB. Thus, their NMs undergo a negotiation process, led by the Sky Food’s
NM, directed by a contract model (not shown), and helped by the Notary.

The scenario in Figure 12 depicts a variant of an english auction that aims
at minimizing the price (property p). The maximum price is 10,00. Thus,
(1) the leader asks the Notary to advertise an auction for an RFP and wants
the notary to collect at most two answers within 30s. The notary broadcasts
the RFP and waits as demanded. The negotiators receive the RFP and (2)
send offers to the Notary in response. The notary collects them and (3)
sends them to the leader. Now, the leader chooses the best offer (p=8) and
(4) asks the notary to start a new auction round. This is repeated until no
negotiator answers the RFP of the last round. Finally, (5) the leader agrees
with the best offer of the previous round (p=6). This scenario may also be
implemented by a Dutch Auction: the leader announces descending offers
and the negotiator who first agrees with the current offer wins the auction.

Similarly, the so-called double auction is easy to be developed using these
primitives. For instance, the negotiators willing to sell a product (in fact,
to define a value for a property) send offers to the leader. Conversely, the
negotiators that want to buy a product (in fact, to ask for a value for a
property) send RFPs to the leader. The leader matches RFPs and offers
using some criterion and forwards the selected offer to the RFP originator.

5.2.2 Voting

Recall again Figure 1. The Cooperative is the negotiation leader and has
a number of member farms (F1, F2,...). The Cooperative itself does not
produce milk. In order to provide milk to its customers (the Dairy), it
negotiates quotas with its member farms. However, the Cooperative wants
to avoid that only a few members monopolize the milk market. Thus, it
negotiates a maximum quota for any farm before negotiating any contract

19

Figure 12: The english auction

with its costumers. This is done through a ballot. The Cooperative proposes
three alternatives (e.g., 10, 20, or 30). The members vote in their choices.

Figure 13 shows a diagram for this ballot. First, (1) the Cooperative’s
NM (leader) asks the Notary to conduct the ballot. The Notary (2) accepts
the job and broadcasts the issue to be voted to all negotiators, that is, it
broadcasts an RFP asking for a quota value and the three choices available
(10, 20, or 30). Next, (3) each negotiator sends its vote the Notary. Fi-
nally, (4) the Notary counts the votes and broadcasts the ballot result to all
negotiators. The option “20” has won with 38 votes.

5.2.3 Quota Negotiation

This section resumes the scenario presented in Section 5.2.2, where a maxi-
mum quota was negotiated. Now, individual quotas are established, obeying
the maximum one. The Cooperative (leader) negotiates milk quotas among
several farms, until reaching the desired total. The negotiation process is
aware of the parameters:

• n: number of suppliers.

• QT : total amount of milk to be provided.

20

Figure 13: Voting for maximum quota per farm

• Qi: amount provided by the ith milk farm.

• Qmi: maximum production capacity for the ith milk farm.

• QM : maximum quota for any farm.

• Pi: price (per liter) charged by the ith milk farm to deliver amount Qi

and must obey the restrictions:

• Q1 + Q2 + ... + Qn = QT

• Qi ≤ Qmi and Qi ≤ QM

There are two complementary heuristic strategies for quota negotiation:
the Cooperative tries to buy cheap milk, while the farm tries to sell expensive
milk. The interaction of both strategies usually ends up in an intermediate
price. The objective of the negotiation, as determined by the leader, is:

minimize
∑

(Qi ∗ Pi).

Leader Strategy

The cooperative believes that the price asked by any farm depends on
the amount of milk. Each farm has a price function that it does not disclose.
The strategy of the leader is first to issue a number of RFPs asking the price
of different increasing amounts of milk. Based on the answers, for each farm,
the dairy constructs, a table Prices[q, p] (Table 3): for a given RFP, the farm

21

T 1 2 3 . . .

Q 10 20 30 . . .
P 0,90 0,80 0,72 . . .

Table 3: The price function for a farm

answered that it should deliver q liters of milk at a price p per liter– e.g., the
price for milk between 10 and 19 liters is $0,90 per liter.

Those tables are used to construct the price function for each farm. Next,
these functions are used by an optimization tool aiming at finding the min-
imum cost for the total amount of milk. For the sake of simplicity, we sup-
pose that Qi ≥ Qi+1. Let K be number of farms needed to provide the total
amount. The equation that describes cost computation is:

CT = Q1 ∗ P1 + Q2 ∗ P2 + ... + Qk ∗ Pk (1)

The cooperative believes that the prices answered by each farm are in-
flated. Thus, the cooperative bargains with each negotiator (i). It offers
increasing prices for the quantity Qi found for the Equation 1, beginning
with a price smaller than Pi. The last offer will be the asked price (Pi).
Supposedly, the farm will agree with one of the offers because the last offer
is the one it has proposed.
Farm Strategy

The farms follow a different strategy. They listen to RFPs and offers, and
respond appropriately. Their strategy is quite simple: when a farm receives
an RFP, it returns a higher value. When a farm receives an offer, it accepts
offers with values higher (or equal) to the value it expects.

Figure 14 illustrates the interactions between the Cooperative and the
farms. The Cooperative (1) broadcasts an RFP inquiring the price each
farm charges for 10 liters of milk. Farms F1 and F2 answer the RFP sending
offers to the Cooperative. The Cooperative (2) keeps inquiring the farms for
different amounts of milk. Next, (3) the Cooperative bargains with F1, and
similarly (4) with F2.

6 Related Work

This section reviews related work on supply chains (Section 6.1), electronic
contracts (Section 6.2), the negotiation process (Section 6.3), and contract
enactment (Section 6.4).

22

Figure 14: Quota negotiation

6.1 Supply Chains

Supply Chain Management (SCM) is based on the integration of all activities
that add value to customers starting from product design to delivery, in
order to minimize system wide cost while satisfying service level requirements
[GN04]. It aims at specific processes in order to optimize inventory level,
reduce cost and increase profits. The proposal of [KKC04] even goes into
budget and payment control. Our approach differs from the usual treatment
of SCM in the sense that our goal is to provide generic mechanisms that
allow cooperation among the participants of a supply chain without aiming
at any specific business process.

Chatfield and others [CHH06] present a supply chain simulation system
that is based on a supply chain description, written in SCML - Supply Chain
Modeling Language. This description contains structural (nodes, arcs, com-
ponents, actors, and policies) and managerial information (properties asso-
ciated with these constructs, e.g., storage capability, inputs and outputs).
Structural and managerial information are used to build on demand a math-
ematical model that simulates a supply chain.

Our architecture proposes a supply chain structure quite similar to the
one proposed by Chatfield. However, it does not contain a separate structure
for managerial information, which is instead stated in contracts, regulations,

23

summaries and coordination plans. This decentralization facilitates local
administration of tasks, within Web services, being thus closer to real world
supply chains.

6.2 Contracts

There are several proposals for e-contract specification. In [ATG05], business
contracts specify the exchange of values among business parties and the con-
ditions for the exchange. They require three fundamental classes of language
constructs: data constructs, process constructs, and rule constructs. Data
constructs define the exchanged values between parties, such as quantities,
prices, deadlines, and quality categories. Rule constructs express the condi-
tions for product exchange. Process constructs are responsible for describing
the steps of contract enactment.

[LMC+04] models an enterprise as a series of interrelated communities,
whose members perform roles. Their contract monitoring language (BCL) is
made up from the following entities: a) community expressions; b) policies; c)
temporal constraints; d) event matching constraints; e) state conditions. In
[KKC04], the entities of an e-contract are: parties, clauses, budget, roles and
payments. Contracts can be composed into more complex ones. [HLGA01]
includes details of the infrastructure needed to carry out contracts.

Our contracts are semi-structured documents composed of clauses. Each
clause refers to a duty or a right of a partner. A clause has one or more
properties that qualify and quantify such right or dutys, and a number of
constraints (e.g., temporal, spatial, quality). Properties must be understood
by all the negotiators, using ontologies.

In [WH02], contracts are specified using the XBLC language. An XBLC
contract is composed of one or more workflows that specify and coordinate
transactions to be run. This kind of contract is used to coordinate and control
the interaction between business workflows. This approach is different from
ours. Our contracts do not coordinate the activities that must be performed
to fulfill the agreement. Coordination is performed by other entities in our
architecture [BMM04], called “Coordination Managers”. Thus, we separate
the obligations (what) from how they can be fulfilled. Again, this is closer
to reality, since conditions may change in a supply chain. Commitments are
still valid, but the way they can be fulfilled may need to be changed.

Fantinato and others [FdTdSG06] address contracts for e-services supply
and consumption based on feature modeling. The approach is similar to ours,
in the sense that contracts are generated from existing templates and that
their features can be broadly compared with our properties. However, our
approach is more general. In particular, while e-services are central in their

24

work, we use e-services just as a mechanism to start clause execution.

6.3 The Negotiation Process

There are a number of mechanisms that guide the negotiation process. Bar-
tolini [BPJ04] constructs negotiation templates that specify different negoti-
ation parameters that can be constrained or open. Chiu [CCH+05] also uses
contract templates as a reference document for negotiation. Contract clauses
contain template variables, whose values are to be negotiated separately or
together (e.g., quantity, delivery date and price). Similarly, [RWG01] uses a
contract template that describes the negotiation parameters, how they are
interrelated, along with meta-level rules about the negotiation. In contrast,
[HCWN03] uses a set of examples of good agreements and it is up to the
negotiator to try to get as close as possible to one of the examples.

Others – e.g., [HLGA01] or [NSDM04] – do not present a proper nego-
tiation process. Their approach is based on matchmaking. The approach
of [HLGA01] is based on predefined contract templates. The seller creates a
Contract Advertising Template (CAT) and submits it to a Matchmaking En-
gine. The consumer creates a Contract Search Template (CST), and submits
his proposal to the same engine. Next, the engine tries to match CATs and
CSTs. [NSDM04] proposes a matchmaking facilitator based on description
logics that ranks matches within categories.

Like most of these papers, our e-negotiation process is guided by a con-
tract model with properties not yet bound to a value. Thus, broadly speak-
ing, the negotiation process concerns determining values for unbound prop-
erties. Like [BPJ04], properties may be open or constrained. We distinguish
moreover between optional and non-optional properties.

Negotiation strategy is another issue addressed in the literature. Ac-
cording to [GDtHO01], techniques for designing negotiation strategies can
be classified into three categories: (i) game-theoretic, (ii) heuristic, and (iii)
argumentation. The first approach models a negotiation situation as a game
and attempts to find dominant strategies for each participant by applying
game theory techniques. In heuristic-based approaches, a strategy consists
of a family of tactics (i.e., a method for generating counter-offers), and a set
of rules for selecting a particular tactic depending on the negotiation stage.
Argumentation-based approaches extend heuristic ones by introducing issues
such as threats (e.g., “that is my last offer”), rewards, etc.

Our negotiators may be implemented using any kind of negotiation strat-
egy. They only need to agree on the negotiation protocol and to have a
common vocabulary.

Another issue comprises the languages used to specify the negotiation

25

rules, the strategy and the language used to conduct the negotiation process
itself. In general, languages for rules and strategies are declarative and taken
from the AI field, such as Defeasible Logic [GDtHO01] and Courteous Logic
Programming [Gro97]. Conversely, languages for the negotiation process are
similar to protocols used in distributed systems. Any of those languages
faces the problem of heterogeneity of vocabulary and concepts. Although
some concepts are well-defined in a negotiation framework (e.g., the negotia-
tion protocol is formally defined), contract variables, such as product names,
measure units, and currency, may not be standardized and such differences
must be reconciliated on the fly. According to [MPO06], this is aggravated in
the dynamic environment of e-commerce negotiations where transactions in-
volve interactions among different enterprises, using different representations
and terminologies. To solve this, [MPO06] combine the use of ontologies and
agent technologies, in negotiations within car assembly supply chains. Our
use of ontologies addresses the same interoperability issues.

Our negotiation process is developed through the exchange of messages
among the negotiators that comply with a specific protocol. This is a common
approach, like the ones based on FIPA’s standards [FIP00], e.g., [MPO06].

Governatori and others [GDtHO01] have a different approach. They pro-
pose a negotiation process that uses Defeasible Logic. Each negotiator has a
set of facts and rules. A negotiator makes an offer to another, with a set of
public facts calculated previously. A second negotiator uses this set of facts
and its own knowledge database to decide if it will accept, decline the offer
or make a counter-offer.

Table 4 summarizes the negotiation issues discussed in this section.

Characteristic Related Work Our Work

Number of negotia-
tors

bargain (1:1), biding (1:many) (e.g.,
English auction), double auction
(many:many)

allows all of them

Number of items single item, a bundle of items bundle of items (prop-
erties)

Strategy game-theoretic, heuristic, argumen-
tation

allows all of them

Negotiation proto-
col

guided by templates, examples,
matching offers with proposals

guided by templates

exchange of messages, exchange of
knowledge (AI database)

exchange of messages

manual negotiation with successive
refinement of feature models

human actors may in-
tervene, but not com-
pulsory

Table 4: Negotiation issues

26

6.4 Enactment

The enactment phase comprises two main activities: the enactment itself and
monitoring for audit purposes. Enactment should enforce a number of con-
straints and audit must verify if they were actually enforced. In this context,
BCL [LMC+04] expresses and monitors conditions in business contracts. In
addition, [LMC+04] states that a monitor can access a community specifi-
cation (that represents a contract), collect events significant to the contract
from the participants or the environment and interpret them in order to de-
termine whether the contract is being followed. The authors state that it is
possible to think of multiple monitors, each protecting the interests of one of
the signatories.

Conversely, our contracts do not have monitoring constraints to verify if
they have been fulfilled. Clauses have preconditions and postconditions, but
even if they hold, it does not ensure the fulfillment of the contract. How-
ever, logs produced by clause execution can be used for monitoring purposes
following the process mining approach of [vdAvDH+03, vdAdBvD05]. Gov-
ernatori and others [GMS06] have a different approach. They aim at checking
the compatibility of business processes and business contracts by means of a
logic-based formalism.

7 Conclusions

The paper presented a framework for contract negotiation in agricultural
supply chains, which uses our supply chain model ([BMM04]). The main
contributions are: i) a contract model that includes the specification of qual-
ity constraints suitable for this kind of chains; ii) the negotiation protocol
that produces such a contract; and (iii) the implementation of the framework
via Web services. The explicit use of ontologies, exemplified in Sections 3 and
4, combined with Web services, increases interoperability and fosters local
independence among business partners.

A contract is composed of a set of clauses, with pre- and postconditions
– reflecting business rules. Carrying out a contract means activating some
of the clauses individually and in an appropriate order. Clause activation
triggers the execution of a Coordination Plan (Section 2) – a business process.
The Coordination Plan guarantees the appropriate order of clause execution
of a contract. Pre- and postconditions (Regulations), in agricultural chains,
concern both administrative (e.g., payment schedule) and quality (e.g., food
safety measures) constraints.

Two factors differentiate our work from other proposals. First, our nego-

27

tiation protocol is based on a generic grammar, and supports the specification
of a wide variety of negotiation styles, and their implementation, using just
a few negotiation primitives. These primitives are reflected in the messages
exchanged among partners. This was illustrated by a few interaction scenar-
ios. Most other proposals are centered on establishing specific protocols for
given situations.

Second, though intimately related, our proposal clearly separates business
processes from contracts and their negotiation. This allows scenarios where
a given business process requires multiple independent contracts and nego-
tiations. It allows moreover situations where a contract may be enacted by
more than one business process - for instance, one process may be responsible
for fulfilling a part of the contract (e.g., material procurement) and another
process for another part (e.g., shipment). Moreover, this lets contracts and
processes evolve in a transparent way.

This separation between contracts and business processes simplifies pro-
cess management and supports several real life situations in a flexible way.
Contracts define rights and obligations, while processes express how these
rights and obligations will be satisfied. Note that any kind of environmental
alteration (e.g., new law, natural disaster, internal modification) may de-
mand a change in the way a business process is handled, but may not modify
the rights and obligations. That is, they must be fulfilled, but in a different
way.

Since negotiation may happen among many negotiators, several contracts
may be needed at a given chain stage. This raises a number of interesting
problems involving regulation enforcement and audit, especially when rene-
gotiation is allowed, either in the enactment phase or in the renegotiation
phase itself. These are themes for future work. Our negotiation protocol al-
lows several styles of negotiation. Thus, future work also includes identifying
and describing them in a systematic way.

References

[Ars02] A. Arsanjani. Developing and Integrating Enterprise Compo-
nentes and Services. Communications of the ACM, 45(10):31–
34, 2002.

[ATG05] S. Angelov, S. Till, and P.W.P.J. Grefen. Dynamic and secure
B2B e-contract update management. In ACM Conference on
Electronic Commerce, pages 19–28, 2005.

28

[BMM04] E. Bacarin, C.B. Medeiros, and E.R.M. Madeira. A Collabo-
rative Model for Agricultural Supply Chains. In CoopIS 2004,
LNCS 3290, pages 319–336, 2004.

[BPJ04] C. Bartolini, C. Preist, and N.R. Jennings. A software frame-
work for automated negotiation. In SELMAS, pages 213–235,
2004.

[CCH+05] D.K.W. Chiu, S.C. Cheung, P.C.K. Hung, S.Y.Y. Chiu, and
A.K.K. Chung. Developing e-negotiation support with a
meta-modeling approach in a web services environment. De-
cision Support Systems, 40(1):51–69, July 2005.

[CHH06] D.C. Chatfield, T.P. Harrison, and J.C. Hayya. SISCO: An
object-oriented supply chain simulation system. Decision Sup-
port Systems, 42(1):422–434, 2006.

[FdTdSG06] M. Fantinato, M. B. F. de Toledo, and I. M. de S. Gimenes.
A feature-based approach to electronic contracts. In
CEC/EEE’06, pages 34–41, Los Alamitos, CA, USA, 2006.
IEEE Computer Society.

[FIP00] FIPA. Fipa abstract architecture specification. Available at
www.fipa.org, 2000.

[GDtHO01] G. Governatori, M. Dumas, A.H.M. ter Hofstede, and P. Oaks.
A formal approach to protocols and strategies for (legal) ne-
gotiation. In ICAIL, pages 168–177, 2001.

[GM82] H. Garcia-Molina. Elections in distributed computing sys-
tems. IEEE Transactions on Computers, C-31(1):48–59, jan
1982.

[GMS06] G. Governatori, Z. Milosevic, and S. Sadiq. Compliance
checking between business processes and business contracts.
In Proc. 10th Intl. Enterprise Distributed Object Computing
Conference, pages 221–232, 2006.

[GN04] A. Gunasekaran and E.W.T Ngai. Information systems in
supply chain integration and management. European Journal
of Operational Research, 159:269–295, 2004.

[Gro97] B. Grosof. Courteous logic programs: Prioritized conflict han-
dling for rules. IBM Research Report RC20836, May 1997.

29

[HCWN03] P. Henderson, S. Crouch, R.J. Walters, and Q. Ni. Compari-
son of some negotiation algorithms using a tournament-based
approach. In Agent Technologies, Infrastructure, Tools and
Applications for E-Services, volume 2592 of Lecture Notes in
Artificial Intelligence, pages 137–150. Springer, Jan 2003.

[HLGA01] Y. Hoffner, H. Ludwig, P. Grefen, and K. Aberer. Crossflow:
integrating workflow management and electronic commerce.
SIGecom Exch., 2(1):1–10, 2001.

[IBM06] IBM. Ws-coordination. Available at
http://www.ibm.com/developerworks/library/specifi-
cation/ws-tx/, 2006.

[KKC04] R. Krishna, K. Karlapalem, and D.K.W. Chiu. An ERec

framework for e-contract modeling, enactment and monitor-
ing. Data & Knowledge Engineering, 51(1):31–58, oct 2004.

[KMBM07] A.K. Kondo, C.B. Medeiros, E. Bacarin, and E.R.M.
Madeira. Traceability in Food for Supply Chains. In Proc.
3rd International Conference on Web Information Systems
and Technologies (WEBIST), pages 121–127, March 2007.
Barcelona,Spain.

[LMC+04] P.F. Linington, Z. Milosevic, J. Cole, S. Gibson, S. Kulka-
rni, and S. Neal. A unified behavioural model and a contract
language for extended enterprise. Data & Knowledge Engi-
neering, 51(1):5–29, 2004.

[MPO06] A. Malucelli, D. Palzer, and E. Oliveira. Ontology-based ser-
vices to help solving the heterogeneity problem in e-commerce
negotiations. Electronic Commerce Research and Applica-
tions, 5(1):29–43, 2006.

[MZ02] H. Min and G. Zhou. Supply chain modeling: past, present
and future. Computer & Industrial Engineering, 43:231–249,
July 2002.

[NSDM04] T. Noia, E. Sciascio, F.M. Donini, and M. Mongiello. A sys-
tem for principled matchmaking in electronic marketplace.
Intl. Journal of Electronic Commerce, 8:9–37, Summer 2004.

[RWG01] D.M. Reeves, M.P. Wellman, and B.N. Grosof. Automated
negotiation from declarative contract descriptions. In Proc.

30

of the 5th International Conference on Autonomous Agents,
pages 51–58, Canada, 2001. ACM Press.

[vdAdBvD05] W.M.P. van der Aalst, H.T. de Beer, and B.F. van Dongen.
Process mining and verification of properties: An approach
based on temporal logic. In OTM Conferences (1), pages
130–147, 2005.

[vdAvDH+03] W.M.P. van der Aalst, B.F. van Dongen, J. Herbst,
L. Maruster, G. Schimm, and A.J.M.M. Weijters. Workflow
mining: A survey of issues and approaches. Data & Knowl-
edge Engineering, 47(2):237–267, 2003.

[WH02] H. Weigand and W. Heuvel. Cross-organizational work-
flow integration using contracts. Decision Support Systems,
33(3):247–265, July 2002.

31

