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Abstract Tensor scale is a morphometric parameter that unifies the repre-
sentation of local structure thickness, orientation, and anisotropy,
which can be used in several computer vision and image process-
ing tasks. In this paper, we exploit this concept for binary images
and propose a shape descriptor that encodes region and contour
properties in a very efficient way. Experimental results are pro-
vided, showing the effectiveness of the proposed descriptor, when
compared to other relevant shape descriptors, with regard to their
use in content-based image retrieval systems.

Keywords: image processing, shape description, image retrieval.

1. Introduction

The recent growth of the World Wide Web and the new technologies that
became available for image acquisition and storage have increased the de-
mand for image retrieval systems based on image properties.

In content-based image retrieval (CBIR) systems, image processing tech-
niques are used to describe the image content, encoding image properties
that are relevant to the query. Usually, these properties are represented by
shape, color, and texture descriptors of objects or regions within the image.
A descriptor can be characterized by two functions: a feature vector extrac-
tion function and a similarity function. The feature vector represents the
properties extracted from the image and the similarity function computes
the similarity between images based on their feature vectors [1].

The shape of an object is an important and basic visual feature for de-
scribing image content [2]. Shape representation generally aims at effective
and perceptually important shape features based on boundary information
– contour-based methods – and/or on interior content – region-based meth-
ods. Each class can be further broken into structural and global approaches,
depending on whether the shape is represented as a whole or by segments
or sections [2].

In this work, we propose a new descriptor based on tensor scale that
exploits region and contour information. Tensor scale [3] is a morphomet-
ric parameter yielding a unique representation of local structure thickness,
orientation, and anisotropy. That is, at any image point, its tensor scale is



represented by the largest ellipse (2D), or ellipsoid (3D), centered at that
point and within the same homogeneous region.

We exploit the tensor scale concept for objects and, for sake of simplicity,
we only consider objects with a single contour. The descriptor computes the
tensor scale ellipse for every object point, divides the object’s contour into a
predefined number of segments, computes the influence zone of each segment
and assigns, to each segment, the weighted angular mean orientation [4]
of the ellipses within its influence zone. The influence zone of a segment
consists of the object pixels that are closest to pixels of that segment than
to any other pixel along the contour.

By dividing the contour into a small number of ordered segments, we are
aiming at efficiency in encoding contour information. By mapping tensor
scale orientation onto the segments, we are exploiting region information.
As we will show, this makes the proposed descriptor compact, efficient, and
effective for CBIR.

A previous shape descriptor based on tensor scale – Tensor Scale De-
scriptor [5] (TSD) – was proposed based on the histogram of the tensor scale
orientation of the ellipses. Our descriptor introduces a totally new way of
exploiting tensor scale orientation, which includes spatial information. We
also present a much faster computation of the ellipses by exploiting the
Image Foresting Transform (IFT) [6].

2. Background

In [3], Punam introduced a local method for gray-scale images – tensor scale
– represented by the largest ellipse within the same homogeneous region,
centered at a given pixel p. This method defines the ellipse by three factors:

• Orientation(p) = angle between t1(p) and the horizontal axis;

• Anisotropy(p) =

√
1− |t2(p)|2
|t1(p)|2

;

• Thickness(p) = |t2(p)|;

where |t1(p)| and |t2(p)|, with |t1(p)| ≥ |t2(p)|, denote the length of the two
semi-axis of the ellipse centered at p.

A tensor scale ellipse is calculated from sample lines that are traced
around a given pixel, from 0 to 179 degrees (Figure 1(a)). The axes of the
ellipse are determined by computing the image intensities along each of the
sample lines and the location of two opposite edge points on these lines
(Figure 1(b)). The next step consists of repositioning the edge locations
to points equidistant to that given pixel, following the axial symmetry of
the ellipse (Figure 1(c)). The computation of the best-fit ellipse to the
repositioned edge locations is done by Principal Component Analysis (PCA)
(Figure 1(d)).
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Figure 1. Tensor scale computation.

These computations are performed for every pixel of the image. A crit-
ical drawback of Punam’s approach is that the computational cost of the
algorithm makes his method quite prohibitive for CBIR systems. For this
reason, Miranda et al. [5] proposed an efficient implementation of the orig-
inal method, which differs in the following aspects.

The first change was in the edge location phase, in which Miranda’s
approach is to go along each pair of opposite segments, alternately and
at the same time, instead of going along one entire segment by turn. By
doing this, the reposition phase is no longer necessary. The second change
was the use of two connected thresholds to improve and simplify the original
method of detecting edges. The third and final change was the improvement
of the ellipse computation phase. Miranda et al. proposed a function g
(Equation 1) that gives the angle of the ellipse directly, instead of using
PCA. The ellipse orientation is obtained from the value of γ that minimizes
the function g below.

g(γ) =
∑

i=1,2,...,2m

[x2
iγ
− y2

iγ
], (1)

where xiγ = xi cos(γ) − yi sin(γ), yiγ = xi sin(γ) + yi cos(γ), (xi, yi) are
the relative coordinates of the edge points with respect to the center pixel
p = (xp, yp) of the ellipse, and (xiγ

, yiγ
) are the new coordinates after

applying a rotation by the angle γ.
Considering these optimizations, Miranda et al. [5] proposed the Tensor

Scale Descriptor (TSD) for gray-scale images. The idea of their shape de-
scriptor stemmed from the observation that distinct objects often present
different tensor scale local orientation distributions of their shape (this is
also valid for texture, i.e., their descriptor could be easily extended for col-
ored images). The TSD descriptor computes the tensor scale parameters for
the original image and then computes the local orientation histogram, used
as feature vector. The matching of two given images by TSD is made by tak-
ing the absolute difference of the area between their orientation histograms,
after correcting the displacement by correlation (i.e., object rotations cause
shifts in the histogram).



In the next sections, we propose a new shape descriptor based on tensor
scale – Tensor Scale Descriptor with Influence Zones (TSDIZ) – and show
how it can provide considerable improvements in CBIR. We also provide a
faster computation of tensor scale, as compared to previous approaches [3,5],
by exploiting the Euclidean Image-Foresting Transform [7].

3. The TSDIZ descriptor

The key idea of the proposed descriptor is to map the tensor scale orien-
tations inside an object onto a few segments of its contour, and use this
information for shape description.

Orientation mapping is done by exploiting the discrete Voronoi regions
(influence zones) of contour segments inside the object. The discrete Voronoi
regions can be efficiently obtained by label propagation using the Image
Foresting Transform (IFT) [6].

The IFT is a graph-based approach to the design of image processing
operators based on connectivity, in which the images are represented by
graphs – the pixels are considered as nodes and the arcs are defined by an
adjacency relation between pixels. For a given seed set, each seed defines
an influence zone consisting of the pixels that are “more closely connected”
to that seed than to any other, according to a path-cost function [6]. We
use a path-cost function that assigns the closest Euclidean distance between
object pixels and contour pixels to each pixel inside the object (Euclidean
IFT – Euclidean distance transform via IFT).

The TSDIZ approach divides the contour into segments, labels each
contour segment with a distinct number, and propagates these labels inside
the object via Euclidean IFT. It is assigned to each segment, a weighted
angular mean orientation of the ellipses inside its influence zone, using their
anisotropies as weights.

In the next section, we present the Euclidean IFT that is used for tensor
scale computation and tensor scale mapping.

3.1 Euclidean IFT

The Euclidean IFT is used for two purposes in TSDIZ: faster tensor scale
computation (Section 3.2) and tensor scale orientation mapping (Section 3.3).
The advantages of calculating the Euclidean Distance Transform via IFT is
that label propagation is executed on-the-fly and in linear time.

In the Euclidean IFT (Algorithm 1), the path-cost function is such that
the cost of a path from a seed s to a pixel t in the forest is the Euclidean
distance between s and t. The algorithm also needs an Euclidean relation
A that is defined as

q ∈ A(p)⇒ (xq − xp)2 + (yq − yp)2 ≤ ρ2, (2)



where ρ is the adjacency radius and (xi, yi) are the coordinates of a pixel i
in the image.

Our Euclidean IFT assigns three attributes to each object pixel p: the
squared Euclidean distance C(p) between p and its closest point s in the
contour (forming an optimum cost map), its closest seed R(p) = s (forming
a root map), and the label L(p) = L(s) of the segment that contains s
(forming a label map).

Algorithm 1: Euclidean Distance Transform via IFT.
Input: A binary image I, a set S of contour pixels in I (seeds), an

Euclidean adjacency relation A, and a labeling function λ(p)
that assigns a segment label to each pixel p in S.

Output: The cost map C, the root map R, and the label map L.
Auxiliary data structure: A priority queue Q.
begin

foreach p ∈ I do
C(p)← +∞; R(p)← NIL; L(p)← NIL;

foreach p ∈ S do
C(p)← 0; R(p)← p; L(p)← λ(p);
insert p in Q;

while Q is not empty do
remove from Q a pixel p = (xp, yp) such that C(p) is
minimum;
foreach q = (xq, yq) such that q ∈ A(p) and C(q) > C(p) do

C ′ ← (xq − xR(p))2 + (yq − yR(p))2, where
R(p) = (xR(p), yR(p)) is the root pixel of p;
if C ′ < C(q) then

if C(q) 6= +∞ then
remove q from Q;

C(q)← C ′; R(q)← R(p); L(q)← L(p);
insert q in Q;

end

3.2 Faster tensor scale computation for binary images

A considerable speedup in the computation of the tensor scale for binary
images is possible by exploiting the following aspect: if we have the shortest
distance between a pixel p and the contour, there is no need to search for
edge points inside the circle with radius

√
C(p) (Figure 2(a)).

According to Miranda’s algorithm, edge points are searched along oppo-
site sample lines, alternately. In our approach, the algorithm jumps along
the lines and visits the pixels q and r at the same time (Figure 2(b)).



(a) First step. (b) Second step.

(c) Third step.

Figure 2. Example of optimization made by using Euclidean IFT.

The searching for edge points continues outside the area defined by the
cost

√
C(p) in Figure 2(b), and the minimum between

√
C(r) and

√
C(q)

indicates the location for the next jump. These jumps may continue itera-
tively until the closest edge point along the sample line is found.

In the example, the edge is found at the pixel R(r) (i.e., at the contour
point r′ nearest to r). The algorithm defines that the two edge points
in this sample line are at r′ (coordinate of R(r) relative to p) and at q′

(coordinate of the point diametrically opposite to r′, relative to p), as shown
in Figure 2(c).

By performing this procedure for all sample lines, the algorithm defines
all edge points and uses the same formula defined by Miranda et al. (Equa-
tion 1) for finding the orientation of the ellipse.

The localization of the edge points is formalized in Algorithm 2.
The next section presents orientation mapping based on Euclidean IFT.



Algorithm 2: Edge points localization for ellipse centered at pixel p.
Input: A pixel p = (xp, yp), the number m of sample lines, and the

cost map C returned by Algorithm 1.
Output: The vector edge that contains m pairs of edge points

localized at the sample lines.
begin

for θ ← 0◦ to 179◦, with increments
180
m

do

v ←
√

C(p);
p1 ← NIL; p2 ← NIL; q1 ← 0; q2 ← 0;
while p1 6= 0 and p2 6= 0 do

x← v ∗ cos(θ); y ← v ∗ sin(θ);
if q1 = 0 then

temp← (xp + x, yp + y); p1 ←
√

C(temp);
if q2 = 0 then

temp← (xp − x, yp − y); p2 ←
√

C(temp);
d← min(p1, p2); v ← v + d;
q1 ← p1 − d; q2 ← p2 − d;

edge[θ]← ((x, y), (x′, y′)), where (x′, y′) is the coordinate of
the point diametrically opposite to (x, y), relative to p;

end

3.3 Feature vector of TSDIZ by orientation mapping
onto contour segments

Prior to tensor scale orientation mapping, TSDIZ approach has two stages:
tensor scale computation for all pixels inside the object and partition of the
object contour into segments.

The orientation mapping uses the label map L returned by the Euclidean
IFT (Algorithm 1). The map L groups pixels and their ellipses in the in-
fluence zone of each segment. TSDIZ uses as feature vector F the weighted
mean of the ellipses orientations in each influence zone of segment. There-
fore, F can be indexed by L. The TSDIZ feature vector is formed by the
mapped tensor scale orientations (F ) and has size equal to the number ns

of segments. Algorithm 3 shows the feature vector computation for TSDIZ.
The function WeightedAngularMean(V [i]) returns the weighted an-

gular mean of the ellipses orientations contained in influence zone i, i =
1, 2, . . . , ns, considering the anisotropies as the weights. The mean θ for
angular data [4] is calculated as

θ = arctan

(∑n
p=1 Ani[p] ∗ sin(2 ∗Ori[p])∑n
p=1 Ani[p] ∗ cos(2 ∗Ori[p])

)
(3)



Algorithm 3: Feature vector computation for TSDIZ by tensor scale
orientation mapping.
Input: A binary image I containing an object O, the number ns of

contour segments, the label map L returned by Algorithm 1,
and the vectors Ani and Ori that contain the anisotropies
and the orientations of the tensor scale ellipses computed for
all pixels of object O, respectively.

Output: A feature vector F that contains the mapped orientation
for each contour segment.

Auxiliary data structure: A vector V of ns lists to store ellipse
information in each influence zone.

begin
foreach p ∈ O do

insert (Ani[p], Ori[p]) in list V [L(p)], where L(p) is the label
of the influence zone in which p is contained;

foreach i ∈ [1, . . . , ns] do
F [i] = WeightedAngularMean(V [i]);

end

3.4 TSDIZ similarity function

The similarity function has to determine the rotation difference of the ori-
entations between two TSDIZ vectors. This function also has to determine
the position (the segment) in which the feature vectors must be lined up to
obtain the best matching between the underlying shapes.

The exhaustive algorithm (Algorithm 4) consists of the registration be-
tween the orientation feature vectors. Considering α = 0◦, . . . , 179◦ and
j = 1, . . . , ns, where ns is the size of the vectors, the algorithm computes,
for each rotation α and for each shift j in the feature vector, the difference
between the vectors, after rotating all orientations of one vector by α and
circular shifting the same vector by j. The minimun difference obtained
corresponds to the distance between the vectors.

In Algorithm 4, the function AngularDistance(α, β) gives the smallest
angle between the orientations α and β.

The complexity of this algorithm is O(c ∗ns
2), where c is a constant (in

this case, 179). Although it is an exhaustive search, small values of ns (e.g.,
ns < 70) makes it still fast. Figure 3 illustrates the registration between
two TSDIZ vectors.

4. Experimental results

In this section, the results of the experiments in CBIR are presented.



Algorithm 4: Similarity between two TSDIZ vectors.
Input: Two feature vectors FA and FB .
Output: Distance dist between FA and FB .
begin

dist←∞;
foreach j ∈ [1, . . . , ns] do

foreach α ∈ [0, . . . , 179] do
foreach i ∈ [1, . . . , ns] do

distaux ← AngularDistance({FB [(j − i)
mod ns] + α} mod 180, FA[i]);
if distaux < dist then

dist← distaux;

end

4.1 Image database

Experiments were conducted using MPEG-7 CE-shape-1 part B [8] database,
which consists of 1400 images, categorized in 70 classes (20 images on each
class). It is composed by objects silhouettes, like fruits and animals.

4.2 Results

The experiments consist in comparing the TSDIZ and other shape descrip-
tors, with respect to two effectiveness measures used in CBIR – precision
vs. recall [9] (PR) and multiscale separability [10] (MS separability).

In [10], Torres et al. showed that MS separability represents better than
PR curves the separation among clusters (groups of relevant images) in the
feature space. This separation is strongly related to the performance of
CBIR systems because the search methods rely on them. However, PR is
still the most popular effectiveness measure in CBIR. For this reason, we
present the results with both measures.

Precision vs. Recall

Precision is defined as the fraction of retrieved images that are relevant to
the query. In contrast, recall measures the proportion of relevant images
among the retrieved images. The Precision vs. Recall curve, or PR curve,
indicates the commitment between the two measures and, generally, the
highest curve in the graph indicates better effectiveness.

In this experiment, TSDIZ is compared with the following shape de-
scriptors: Beam Angle Statistics [11] (BAS), Multiscale Fractal Dimen-
sion [12] (MS Fractal), Moment Invariants [13] (MI), Fourier Descriptor [14]
(Fourier), Tensor Scale Descriptor [5] (TSD) and Segment Saliences [10] (SS).



(a) (b)

(c) Orientation curve for (a). (d) Orientation curve for (b).

(e) Curve matching.

Figure 3. Examples of TSDIZ curves and registration.

Figure 4(a) presents the PR curves for the evaluated descriptors and
TSDIZ with 60 contour segments. The number of segments is a parameter
that is tuned for each database and can be learned by training.

TSDIZ descriptor has the second best PR curve among the tested de-
scriptors. BAS descriptor presented the best performance according to PR,
as expected for this database [11].

Multiscale separability

A good effectiveness measure should capture the concept of separability.
Separability indicates the discriminatory ability between objects that belong
to distinct classes. This concept is widely used in cluster analysis, and it
was introduced for CBIR by Torres et al. [10].

As TSDIZ has outperformed all other descriptors for MS separability



(a) PR curves for several descriptors. (b) Multiscale separability curves for
TSDIZ and BAS descriptors.

Figure 4. Effectiveness measures experiments conducted in MPEG-7 CE-shape-1
part B database.

as well, we show in Figure 4(b) the MS separability curves of TSDIZ and
BAS only. TSDIZ and BAS present equivalent performance for search radii
less than 10% of their maximum distance. From this point on, the BAS
separability curve decreases quickly, indicating that this descriptor is neither
robust nor effective for search radii greater than 20%.

Figure 5 shows a visual CBIR example for a query image. The images
with a gray background are not in the same class of the query image and
should not be returned by the query.

Figure 5. Visual CBIR example.

5. Conclusions and future work

This paper introduced a new shape descriptor based on tensor scale (TS-
DIZ). It also provided a faster algorithm for tensor scale computation using
Image Foresting Transform (IFT).

The feature vector consists of the tensor scale orientations computed
for all pixels of a given object and mapped onto contour segments. The
partition of the contour aims at efficiency in encoding contour information
and tensor scale orientation mapping aims at storing spatial information
into TSDIZ feature vector. These TSDIZ characteristics make the descriptor
compact, fast and effective for CBIR.

The experiments done with MPEG-7 CE-shape-1 part B database indi-



cate that TSDIZ has better PR curve than all relevant shape descriptors
(except BAS) and the best separability among them, making it the most
robust and effective, according to this metric.

The TSDIZ feature extraction function only computes tensor scale el-
lipses inside objects. Future works will be directed towards incorporating
information from ellipses outside the object as well. The TSDIZ descriptor
will also be evaluated with other shape databases.
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