
Diagnosing similarity of oscillation trends in time series

Leonardo E. Mariote, Claudia Bauzer Medeiros, Ricardo da S. Torres

leonardo.mariote@students.ic.unicamp.br, {cmbm,rtorres}@ic.unicamp.br

Institute of Computing, University of Campinas - CP6176

Campinas, SP, CEP 13084-851, Brazil

Abstract

Sensor networks have increased the amount and variety

of temporal data available, requiring the definition of new

techniques for data mining. Related research typically ad-

dresses the problems of indexing, clustering, classification,

summarization, and anomaly detection. They present many

ways for describing and comparing time series, but they fo-

cus on their values. This paper concentrates on a new as-

pect - that of describing oscillation patterns. It presents a

technique for time series similarity search, based on multi-

ple temporal scales, defining a descriptor that uses the an-

gular coefficients from a linear segmentation of the curve

that represents the evolution of the analyzed series. Prelim-

inary experiments with real datasets showed that our ap-

proach correctly characterizes the oscillation of time series.

1 Introduction

An increasing number of applications periodically col-

lect information from some environment, creating and an-

alyzing temporal data, e.g., rainfall or temperature. Sensor

networks [12, 2, 10] are prime data providers, e.g. in bio-

diversity systems or urban traffic analysis. The use of this

huge amount of data requires the definition of techniques

for mining these data. Similarity search is a basic opera-

tion, used in the majority of the mining operations, being

thus an important problem to be investigated.

Several research initiatives have addressed this problem,

using different methods for compacting, indexing, and com-

paring time series. Some of these methods are specific for

comparing entire time series, while others can work with

subsequences [3, 13, 5]. The problem of searching for sub-

sequences is more difficult, since the method should be able

to align a subsequence query with the right instant in time

when some time series has the desired behavior.

In the rest of this paper we will use the following termi-

nology. Consider a database containing several time series.

Figure 1: The problem of displacement in the values axis.

The goal of similarity search is to find, in this database, all

series which are similar to another series provided as input.

We call this input series a query series.

Similarity mechanisms are based on the notions of fea-

ture descriptor and distance function. A feature descriptor

is typically a set of values, organized according to some

structure (e.g., vector), that summarizes the evolution of

values in a time series. Two series are considered similar if

the distance between their descriptors is below some thresh-

old. Challenges in this area include designing functions that

will extract the appropriate descriptors, and determining ad-

equate distance functions. The pair < feature descriptor,

distance function > is called a data descriptor. Threshold

values, and adequate distance functions must be validated

by experts for each application domain.

This paper addresses the problem of similarity search

from a different perspective, motivated by user needs. It

presents a new data descriptor, based on describing patterns

of data evolution and their oscillation trends, instead of con-

centrating on actual data values. Our descriptor, TIDES

(TIme series oscillation DEScriptor), allows summarization

and comparison of time series oscillations for different tem-

poral scales. Figure 1 shows an example of the kind of con-

cern met by our work. The curve in regions A and B evolves

in the same way, but these two sub-series are displaced rel-

ative to the y-axis. If they were submitted to a conventional

descriptor, they would probably be considered non similar.

The main contribution of this paper is the proposal of a

new kind of time series similarity evaluation, based on the



TIDES multiscale descriptor.

2 Related work

Temporal data mining has been subject to extensive re-

search. Several projects address the problems of compact-

ing, comparing, and indexing time series. A family of fea-

ture extraction functions is based on analyzing spectral in-

formation present in the curve. Examples include the use

of Fourier Transform [3], Singular Value Decomposition

(SVD), and Wavelet Transformations. Although these solu-

tions are able to represent behavior with a small number of

coefficients, they require the curve to be locally stationary

in time. Furthermore, there can be problems when the query

involves some kind of scale or displacement processing.

Other kinds of feature extraction functions have been

studied, like Piecewise Aggregate Approximation (PAA) [9]

and Adaptive Piecewise Constant Approximation (APCA)

[4]. The technique proposed in [9] defines a simple way

to extract features from a time series. At regular times it

extracts data samples (e.g., the average of the period), and

represents an interval with this value. According to the in-

terval used, it can produce a satisfactory representation of

the curve. The ACPA approach works in a similar way, but

it adjusts the length of the segments to the variation of data:

the length of segments, and the number of segments to rep-

resent a period can vary. The difficulty of APCA lies in

indexing, since the number of elements that represents one

series is variable. To address this problem, [4] proposes a

solution based on two distance measures.

There are other techniques to characterize the evolution

of a series. Some are based on linear segmentation [7, 5]. In

[7], for example, the curve that represents the evolution of

a time series is decomposed into a sequence of linear seg-

ments. After this decomposition, many measures can be ob-

tained and manipulated. According to [7], techniques that

use geometrical characteristics for the curve can produce

good results.

Another approach that uses linear segmentation is pro-

posed in [5]. In this method, a user can assign a weight to

each segment. These weights are stored with the endpoints

of the segments, and are used in the distance function. This

enables the user to choose which segments are more impor-

tant than others in a similarity query. Although this tech-

nique gives more control to the user, it does not address the

scale and displacement problems.

The second step in similarity search is the definition of an

appropriate distance function – such as Euclidean (L2) and

Manhattan (L1). The distance used in a technique is tied

to the feature vector defined. However, for some feature

vectors, these distances are not appropriate [6, 11]. Other

distance functions address the problems of scale and dis-

placement in the time axis, like the Time Warping Distance

[6, 11]. This kind of approach was considered unfit for in-

dexing in the literature [1]. Dynamic Time Warping (DTW)

[6] can solve this problem.

The simple DTW approach, however, does not address

the problem of displacements on the y-axis. Most of the de-

scriptors proposed in the literature compare pairwise values,

and do not consider its oscillation behavior (that character-

izes their evolution). Two series of values S1 and S2 are

similar but relatively displaced in the value axis if S1 =<

s1,1, s1,2, ..., s1,n > and S2 =< s2,1, s2,2, ..., s2,n >, and

s1,i − s2,i ≈ δ, ∀i ∈ {1..n} (see Figure 1).

As will be seen, our approach to overcome this problem

is to use the angular coefficient of the linear segments ex-

tracted for the series analyzed. We can describe how the

time series (and not their values) evolve along time. This

should be matched with the DTW techniques, thus simul-

taneously providing solutions for displacements in the time

axis.

Another kind of similarity approach is the symbolic rep-

resentation of the time series [9, 6]. In this approach, the

time series is somehow converted into a sequence of sym-

bols. The conversion is associated with the technique used

for characterizing the corresponding curve. This representa-

tion allows the use of text-match algorithms to compare se-

ries, which are seen as strings of symbols. To calculate the

distance between two series represented in a symbolic way,

it is necessary to define a distance metric between the sym-

bols used. Other technique address specific situations – e.g.

[13] deals with data that represent periodic phenomenon.

Although these works address important points in simi-

larity search, as far as we know none of them focus on the

problem of displacements in the y-axis. Moreover, oscilla-

tion patterns, our main concern, are not considered either.

3 The TIDES Descriptor

3.1 Overview

From a high level point of view, the TIDES descriptor is

derived as follows. While some researchers use spectral in-

formation for the data [3], our work describes the data with

a sequence of linear segments, using a symbolic representa-

tion for each segment. The information used for represent-

ing each segment is its angular coefficient.

Our descriptor is detailed in two basic steps. In the first

step, we introduce how a single scale of a series is de-

scribed. In the second step, we explain how to obtain the

multiscale description of the series, and how to merge the

information present in all these scales. Our solution com-

bines approaches from APCA and symbolic description.



3.2 Feature vector extraction

3.2.1 Transformation into segments

Our feature descriptor represents the data as a set of lin-

ear segments, using a linear segmentation algorithm, the

bottom-up approach [8]. Each of the segments has an an-

gular coefficient with respect to the vertical axis. This co-

efficient represents the oscillation trend of a series in a time

interval. In our experiments (Section 4), we used the fol-

lowing ways to frame the segmentation:

• Produce the best representation with k segments;

• Produce the best representation such that the maxi-

mum error for any segment does not exceed some

threshold e. This threshold is an input parameter for

the method, and varies according to the application.

Once the data has been segmented, the angular coeffi-

cient of each segment is obtained. This coefficient is pro-

cessed and stored, as described in the following.

3.2.2 Feature Vector Representation

Our feature vector is based on the notion of angular coef-

ficient to characterize a series’ oscillation patterns. An an-

gular coefficient represents the slope of a segment wrt the

vertical axis. Consider a series S that has been transformed

into n segments < g1, g2, ..., gn >. The feature vector is

defined as

V =<< a1, l1 >, < a2, l2 >, ..., < an, ln >> (1)

where ai is the angular coefficient of segment gi and li is its

length. Figure 2 shows a segmented representation of one

time series, and the angular coefficients obtained.

The use of angle values, however, may introduce several

problems in similarity computation, and in vector storing

(e.g., due to precision issues or overflows). For this reason,

we adopted a widespread solution - symbolic representa-

tion [9]. In this approach, angular coefficients in one series

are submitted to a classification function Fclass, and are as-

signed to a class (which is represented by a symbol). These

classes are created by clustering functions. Thus,

V =<< y1, l1 >, ..., < yn, ln >> (2)

where yi is the symbol that represents the class assigned to

segment gi.

An angular coefficient can vary between 0o and 180o (or

0 and π radians), in relation to the vertical axis. The range

of possible values (0 to 180) is partitioned in ng sets, where

ng is defined by domain experts.

Figure 2: Angular coefficients from one time series.

3.3 Distance function

Once the feature vector is extracted, the next step is to

define the distance function.

Symbolic representation supports several kinds of dis-

tance functions, e.g., based on dynamic programming [6].

However, in our implementation we used a vertent of the

Manhattan Distance Function (L1). To do so, two feature

vectors, V1 and V2 with different number of segments are

normalized into new feature vectors, NV1 and NV2, with

the same size. Normalization is based on creation of addi-

tional (virtual) points to align segments.

The distance between NV1 and NV2 is given by:

D(NV1, NV2) =
i=n∑

i=1

d(< yi, li >1, < yi, li >2) (3)

where d(< yi, li >1, < yi, li >2) is the distance between

the ith (normalized) segment of vectors NV1 and NV2.

Distance d is computed as:

d(< yi, li >1, < yi, li >2) = (yi,1 − yi,2) ∗ li (4)

where the distance between any two consecutive symbols is

1 – e.g., d(nthsymbol, (n + 4)thsymbol) = 4.

3.4 Multiscale Description

So far, our descriptor provides the oscillation behavior

of a series that has been approximated by linear segments.

This approximation, however, depends on the number of

points chosen in the segmentation process. This may not be

sufficient to describe actual oscillation trends. To solve this,

we extend our solution to a multiscale approach instead of

representing a series by one V , we describe it using multi-

ple V . Each vector corresponds to a segmentation obtained

with a different number of points.

The multiscale feature vector of TIDES is thus:

V =< V1, V2, ...Vk, ...Vn >,

where k is the number of segments used to approximate the

series in a given time granularity. In particular, V1 uses the

endpoints of the series, and corresponds to a single segment.

The value of n is defined by domain experts.



Figure 3: Four different representations for the series 120,

using one (a), five (b), thirteen (c) and thirty (d) segments.

Figure 3 illustrates the idea, with the segmentation of a

series extracted from the Synthetic Control dataset 1, identi-

fied by number 120. It shows how to approximate the series

with one (a), five (b), thirteen (c), and thirty (d) segments.

Each scale corresponds to a distinct level of detail – e.g.,

with one segment it is possible to see the rough oscillation

tendency (ascending, descending, stationary).

Intuitively, the multiscale approach allows users to ana-

lyze a series under distinct granularities. For instance, sup-

pose two series are similar at levels 1 and 2, and dissimilar

afterwards. This means that only for very coarse time gran-

ularities they show the same tendency. In another example,

two series may be similar in a fine granularity say, n seg-

ments but dissimilar at levels 1 and 2. In this case, typically

one curve is ascending (in terms of the y axis) and the other

descending, but oscillations follow the same behavior.

Thus, the descriptor is composed of an array of series

of symbols. The comparison between two series is done in

two basic steps. First of all, the sequences of symbols rel-

ative to each scale are compared, using the distance func-

tion defined. As an example, suppose two series, ms1 =
(s1,1, s1,2, ..., s1,m) and ms2 = (s2,1, s2,2, ..., s2,m), where

ms represents a multiscale series, and s1,i represents a se-

quence of li segments that encodes the sequence s1. To

compare these series, we should compare s1,1 with s2,1,

s1,2 with s2,2, and so on.

The distance function for the multiscale case is based

on computing Equation 3 repeatedly for each scale consid-

ered. Hence, the distance between two normalized multi-

scale feature vectors V A =< V A1...V An > and V B =<

V B1...V Bn > is based on the multiscale distance vector

DM =<< D(V A1, V B1) > ... < D(V An, V Bn) >>

(5)

1www.cs.ucr.edu/ eamonn/timeseriesdata/

Distance vector DM can subsequently be used to com-

pute several kinds of distance functions – e.g., sum or Eu-

clidean distance. The distance vector itself is a good indi-

cator of the scale(s) for which two series can be considered

most similar, as illustrated in the next section.

4 Experimental analysis

4.1 Datasets used

Two kinds of time series were used. The first, the Syn-

thetic Control dataset series, were used to validate two im-

portant TIDES features: y-axis invariance and multiscale

analysis. This data set has 600 series (grouping its training

and test sets), with 60 points each.

Our second test set used real data – monthly average

maximum and minimum temperature readings since 1961

– from five Brazilian cities in São Paulo state (Campinas,

Jaboticabal, Sao Carlos, Sorocaba and Taubate). We used

this data to construct a set of 1336 series of 48 points each,

and classified them according to the month where the series

started – e.g., all series beginning in january of some year

belong to class 1. This second test set was used to compare

the precision of TIDES against Linear Scan. We selected

this kind of phenomenon because temperature oscillation is

similar in a given geographical area, in the same season,

even though values themselves may vary.

4.2 Invariance to noise in the y-axis

Figure 1 illustrates the problem of noise in the y-axis,

where similarity between the two sub-series is not captured

by other methods. This section comments on experiments

conducted to evaluate TIDES when comparing series that

present this sort of relative behavior. In this case, we used a

simpler (single scale) version of the descriptor.

We introduced some noise in the dataset creating, for

all the time series, a new one with a value displacement

in every point. As an example of that, suppose S =
(s1, s2, ..., sn) a time series. We created a series S′ =
(s1 + δ, s2 + δ, ..., sn + δ). In the expanded database, S′

should be returned as one of the most similar series when

the query series is S.

As expected, the artificial series S′ were always returned

as the most similar series (after the S series itself). We

repeated this experiment for all the original 600 series. It

shows TIDES immunity to displacement in the y-axis.

4.3 Introducing multiscale description

One of the advantages of TIDES is that it allows similar-

ity evaluation at different granularities. This is adequate for



Figure 4: Multiscale comparison between series 120 and

194, using three different granularities.

Figure 5: Multiscale Distance: series 120 and 194.

cases in which users want to examine a given phenomenon

from distinct scale perspectives – e.g., in economy.

Figures 4 and 5 show the result of a multiscale compar-

ison using TIDES, for two series in the Synthetic Control

dataset – 120 and 194. In more detail, Figure 4 shows the

curves that describe these series for 1 segment (NV1), 10

segments (NV10), and 55 segments (NV55), respectively

Figures 4(a), 4(b) and 4(c). The figure also shows that, for

the 1-segment representation, the distance computed was

73814,4, whereas for a 55-segment it went down to 277,4.

Suppose the similarity threshold defined by application

domain experts is 300 – i.e., D(NV120, NV194) <= 300.

Then, the results obtained by TIDES for these three scales

is that they are 1-dissimilar, 10-dissimilar, but 55-similar.

Figure 5 shows a curve that plots the distinct distance

values between the same two series (120 and 194), for sev-

eral scales. Here, at lower granularities they have very dif-

ferent oscillation tendencies, but as we “zoom into” more

detailed scales they present similar oscillation behavior.

Figure 6 helps understanding our descriptor. It shows the

sequence of angular coefficients of these two series, with

Figure 6: Angle variation: series 120 and 194.

time, for the smallest granularity (NV55). One can see that

their oscillation patterns are very close, if one considers a

larger number of segments.

4.4 Comparison with Linear Scan

We finish our evaluation with a comparison of single

granularity TIDES and Linear Scan (a point-to-point com-

parison) descriptors, which illustrates their differences, us-

ing our temperature time series dataset. All the series had

47 segments (n = 47), and we used ng = 100. Two series

were considered to be similar if they started in the same (or

neighboring) months.

In this experiment, we conducted two kinds of tests. The

first computed the k nearest neighbors of a query series Q,

for the two descriptors – for k = {30, 50, 70, 100}. Preci-

sion was computed based on the number of similar series

found in each k-NN query. This first test used all 1336 se-

ries in the set as query series.

The second test was also based on k-NN computation,

for the same values of k, but in this case the result elimi-

nated series originating from the same city as Q. For in-

stance, if Q concerned the city of Campinas, then the result

only contained series from all other 4 cities. The goal of

this second test was to increase the influence of oscillation

in the comparison (and not just the values).

To clarify, Sao Carlos is always warmer than Campinas,

because of their geographical characteristics. In a given

summer, each city shows similar patterns of temperature os-

cillation, but values are distinct. Linear scan will first select

all series from Campinas, at summer time, considering them

to be closer to each other than any series from Sao Carlos.

TIDES, on the other hand, will prioritize similar oscillation

trends between Sao Carlos and Campinas in the same sea-

son, and consider them to be more similar than two series

from Campinas in different years.

Columns TEST1 and TEST2 of table 1 respectively

present the percentage a of correct answers for the first and

second tests, where a = similarseries
k

∗ 100.

The table shows that TIDES is more appropriate than

Linear Scan to describe oscillations. In the TIDES column,

the % value indicates how much TIDES is better wrt Lin-



Table 1: Comparison between TIDES and Linear Scan.

k TEST1 TEST2

Lin.Scan TIDES Lin.Scan TIDES

30 90 81(-9%) 78 77(-1%)

50 85 78(-7%) 73 74(1%)

70 78 76(-2%) 69 72(3%)

100 70 73(3%) 62 69(7%)

ear Scan. In TEST2,TIDES rapidly presented better results

than Linear Scan, for a relatively small number of series re-

turned (see precision for k = 50). The larger the size of the

result, the better TIDES performs (precision for k = 100).

In the first type of test, however, Linear Scan showed

good results in the cases where tests were run with small k.

It is only when k increased that the oscillation factor started

to show its influence, in which case TIDES presented a bet-

ter performance (precision when k=100).

5 Conclusions and future work

The number of applications that require management of

time series is growing every day. This has prompted many

kinds of research on time series management and analysis,

which frequently rely on similarity search functionalities.

This kind of search is generally centered on comparing evo-

lution patterns of data values.

Our work contributes to this effort, from another per-

spective, considering needs of another nature. It proposes a

multiscale descriptor – TIDES – whose purpose is to char-

acterize series’ oscillation behavior. We point out two ad-

vantages of using TIDES for this kind of characteristics.

First, it is immune to series displacement along the y-axis.

Second, since it is multiscale, it can be customized to dis-

tinct application domains, where oscillation similarity is a

matter of time granularity. Experiments conducted show

that TIDES serves its purpose, where another frequently

used descriptor, based on linear scan of the series, does not.

Future and ongoing work involve several activities. One

issue is to develop an evaluation methodology, involving

user interaction, with help of experts in interface design,

to tune the scale threshold. Another is to perform more ex-

periments using large series datasets with real data.

Acknowledgments This work was partially funded by

CPqD Foundation, CAPES, FAPESP, CNPq grants and

CNPq projects WebMAPS and RPG.

References

[1] R. Agrawal, K.-I. Lin, H. S. Sawhney, and K. Shim.

Fast similarity search in the presence of noise, scaling,

and translation in time-series databases. In VLDB 95,

pages 490–501, 1995.

[2] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and

E. Cayirci. Wireless sensor networks: a survey. Com-

puter Networks, 38(4):393–422, March 2002.

[3] C. Faloutsos, M. Ranganathan, and Y. Manolopoulos.

Fast subsequence matching in time-series databases.

In SIGMOD, pages 419–429, 1994.

[4] E. Keogh, K. Chakrabarti, M. Pazzani, and S. Mehro-

tra. Locally adaptive dimensionality reduction for in-

dexing large time series databases. In SIGMOD ’01,

pages 151–162, 2001.

[5] E. Keogh and M. Pazzani. An enhanced represen-

tation of time series which allows fast and accurate

classification, clustering and relevance feedback. In

R. Agrawal, P. Stolorz, and G. Piatetsky-Shapiro, edi-

tors, KDD’98, pages 239–241, 1998.

[6] E. Keogh and C. A. Ratanamahatana. Exact indexing

of dynamic time warping. Knowl. Inf. Syst., 7(3):358–

386, 2005.

[7] E. Keogh and P. Smyth. A probabilistic approach

to fast pattern matching in time series databases. In

D. Heckerman, H. Mannila, D. Pregibon, and R. Uthu-

rusamy, editors, 3rd KDDM Conference, pages 24–30,

1997.

[8] E. J. Keogh, S. Chu, D. Hart, and M. J. Pazzani. An

online algorithm for segmenting time series. In IEEE

ICDM ’01, pages 289–296, 2001.

[9] J. Lin, E. Keogh, S. Lonardi, and B. Chiu. A sym-

bolic representation of time series, with implications

for streaming algorithms. In ACM DMKD ’03, pages

2–11, 2003.

[10] A. Mainwaring, D. Culler, J. Polastre, R. Szewczyk,

and J. Anderson. Wireless sensor networks for habitat

monitoring. In ACM WSNA ’02, pages 88–97, 2002.

[11] S. Park, D. Lee, and W. W. Chu. Fast retrieval of

similar subsequences in long sequence databases. In

KDEX ’99, page 60, 1999.

[12] R. Szewczyk, J. Polastre, A. Mainwaring, and

D. Culler. Lessons from a sensor network expedi-

tion. In Proceedings of the First European Workshop

on Sensor Networks (EWSN), Jan. 2004.

[13] H. Wu, B. Salzberg, G. C. Sharp, S. B. Jiang, H. Shi-

rato, and D. Kaeli. Subsequence matching on struc-

tured time series data. In SIGMOD ’05, pages 682–

693, 2005.


