
 1

 A SYSTEM FOR CHANGE DOCUMENTATION BASED ON A SPATIOTEMPORAL DATABASE

M. A. Peerbocus1, C. Bauzer Medeiros2, G. Jomier1, A. Voisard3

1 LAMSADE 2 IC – UNICAMP 3 Computer Science Institute
University Paris Dauphine CP 6176 Freie Universitat Berlin
Pl du Mal de Lattre de Tassigny 13081-970 Campinas SP 14195 Berlin
75775 Paris Cedex 16 Brazil Germany
France

Corresponding author
Claudia Bauzer Medeiros
IC – UNICAMP – CP 6176
13081-970
Campinas SP Brazil
cmbm@ic.unicamp.br

Abstract

The evolution of geographic phenomena has been one of the concerns of spatiotemporal database

research. However, in a large spectrum of geographical applications, users need more than a mere

representation of data evolution. For instance, in urban management applications - e.g. cadastral

evolution - users often need to know why, how, and by whom certain changes have been performed as

well as their possible impact on the environment. Answers to such queries are not possible unless

supplementary information concerning real world events is associated with the corresponding changes

in the database and is managed efficiently. This paper proposes a solution to this problem, which is

based on extending a spatiotemporal database with a mechanism for managing documentation on the

evolution of geographic information. This solution has been implemented in a GIS-based prototype,

which is also discussed in the paper.

Keywords – Spatiotemporal evolution; database versions; dynamic documentation; urban management

documentation

 2

A SYSTEM FOR CHANGE DOCUMENTATION BASED ON A SPATIOTEMPORAL DATABASE

M. A. Peerbocus, C. Bauzer Medeiros, G. Jomier, A. Voisard

Abstract

The evolution of geographic phenomena has been one of the concerns of spatiotemporal database

research.. However, in a large spectrum of geographical applications, users need more than a mere

representation of data evolution. For instance, in urban management applications - e.g. cadastral

evolution - users often need to know why, how, and by whom certain changes have been performed as

well as their possible impact on the environment. Answers to such queries are not possible unless

supplementary information concerning real world events is associated with the corresponding changes

in the database and is managed efficiently. This paper proposes a solution to this problem, which is

based on extending a spatiotemporal database with a mechanism for managing documentation on the

evolution of geographic information. This solution has been implemented in a GIS-based prototype,

which is also discussed in the paper.

Keywords – Spatiotemporal evolution; database versions; dynamic documentation; urban management

documentation

1 Introduction

The representation of the spatiotemporal evolution of objects has been the focus of intensive research

for over a decade and many spatiotemporal models and prototypes have been developed in the context

of geographic applications. As stated by Langran [LAN92], representing spatiotemporal evolution

should help to trace and analyze changes in spatial information by responding to what, when and where

queries such as:

- Where and when did such a change occur?

- What types of change occurred?

However, in a large spectrum of geographical applications, especially those involving many

participants, a mere representation of the spatiotemporal evolution is not enough. It is also important to

know the reasons underlying the changes performed in the spatiotemporal database and their impact on

the environment. This paper is concerned with urban development applications, where this kind of

concern is found at every administration/decision instance. It is also of practical concern for all

organizations that deal with map production and delivery [Bad98]. The solution proposed in this paper

is based on associating different kinds of documentation with the changes occurring in a spatiotemporal

database in order to support a better understanding of the spatiotemporal evolution.

 3

In geographic applications, the interpretation of what is actually meant by “spatiotemporal

change” varies according to the angle from which it is considered. The context in which we base our

work is the following. Digital cartographic data about a city are initially stored in the database, and

users interact with this database via an information system (e.g., a GIS). As the city changes,

modifications have to be reflected in the database (e.g., a cadastral application). Major changes require

replacing large amounts of data in the geographic database. Sometimes the solution is to replace the

entire database. Smaller changes, on the other hand, occur much more often and are entered by users via

the information system interface and reflected on the database. Regardless of the volume of changes,

users must be able to keep track of the evolution of the city landscape, as illustrated in Figure 1. There

are at least three perspectives that must be considered in this context, namely the real world, the

cartographic, and the database perspectives. Let us explain them briefly.

Real-world perspective. From the real world point of view, a change refers to a real world event,

which is a consequence of natural phenomena or human action, such as the creation of a new street in

an urban development project that cuts across several parcels.

Cartographic perspective (interface). From an information system’s view point, we consider that the

cartographic level is the user’s interface to the spatiotemporal database. Here, a map is how the user

sees data stored in the database. Maps are therefore transient graphical displays. Since the cartographic

perspective corresponds to the system’s interface, it is through this level that real world changes are

reflected into the stored database. For instance, following the street creation, the limits of the parcels

concerned are changed. The user applies these changes via the system’s interface – i.e., the user applies

changes on a cadastral map, producing a new map version. Thus, from this interface perspective, there

are now two map versions – the old and the updated cadastral map. From now on, we will use the term

“map version” to denote the distinct graphical renderings of a given area, reflecting real life

modifications.

Database level. At the database level, a real world event is represented by updates – i.e., creation,

deletion and modification - on the database objects that store data corresponding to the real world.

Again, in the street example, this affects the information stored about the parcels and, furthermore,

introduces an instance of a "street" object in the database. At this level, we use the term stored map, to

indicate the set of stored objects concerning an area, and which are combined to be shown at the

cartographic level as a map of that area.

Distinct kinds of users may be interested in different levels of changes. For instance:

- A surveyor is concerned with real world events.

- The user of a cadastral map (e.g., city planner) may want to compare city regions where

changes occurred within a certain period – and thus ask to see the corresponding versions.

- A database administrator may want to check the last update of a database object.

 4

Figure 1. Different levels of changes

The granularity of changes may vary from one level to another. At the database level, each

update corresponds to a change, whereas at the cartographic level – which is what the user sees and

interacts with - one change may correspond to several data update operations (in database terms, a long

transaction). In this paper, we use the term “update” to refer to the database level changes and the term

“modification” for the cartographic level changes, whereas “change” refers to both kinds of change. Our

goal is to document all these changes within the database itself.

We are interested in three major types of change documentation in the context of spatiotemporal

data management, more precisely: (i) documents about events occurring in the real world, constituting

the semantic aspect of the evolution; (ii) documents concerning the cartographic evolution describing

the different modifications the user performed at the interface level; and (iii) documentation about the

database evolution, containing information about the different objects that have been updated.

However, storing change documentation in a database is not straightforward, especially when

the database contains elements that are interconnected. This often arises in geographic applications

where updating an object may imply changes on associated objects. Furthermore, whereas some objects

are updated for a given (real world) reason, others suffer updates as a consequence – e.g., to maintain

topological integrity or semantic consistency. For instance, if the width of a street is doubled, it is not

only the parcels along that street that may be affected, but all other kinds of objects, e.g., lamp poles

have to be moved, pedestrian crossings have to be extended, and so on. Thus, the problem is first to find

Geographic
database

Real world level

Cartographic level

1. Events bring about
changes in the real world in
time

4. The changes are
displayed in the different
map versions at distinct
update times.

3. Changes are translated
by the update of objects in
the database. The set of
objects corresponds to the
“stored map”.

Database level

2. Changes in geographic
data are made via the
graphical interface, where
data are presented as
maps.

Parcel sale

Street

Construction

 5

out the kind of documents that should be stored and then to define how they should be stored in order to

allow access to both direct and indirect reasons for an update.

This paper focuses on the management of spatiotemporal change documentation in the context

of urban development applications. It proposes a solution to this problem based on two principles: (a)

the use of a geographic database extended with a version management mechanism; and (b) the selective

storing of change documentation for the three levels. Each level requires distinct documentation storage

and management criteria in order to minimize redundancy. In this framework, besides executing what-,

when-, and where-queries typical in the evolution of geographic phenomena, users may also execute

corresponding why-, how-, and who-queries. Each of these queries may be posed on distinct stored

versions of the world. This allows urban planners to keep track of the evolution of a city’s landscape

and therefore helps them in their decision processes.

This paper is organized as follows. Section 2 describes related work. Section 3 presents a simple

example of spatiotemporal evolution for an urban development application, which is used throughout

the paper. Section 4 presents our proposal for managing change documentation in a spatiotemporal

database. Implementation structures are described in Section 5. Section 6 focuses on the querying

mechanism used to query change documentation. Section 7 briefly describes a prototype that has been

implemented using the concepts presented in the paper. Finally, Section 8 presents our conclusions.

2 Related work

The need for documentation has prompted the appearance on experts on this field, who now

have to concern themselves with the requirements of digital data [Grice02]. Issues related to the

documentation of spatial data evolution have seldom been considered. It is only recently that database

researchers have started analyzing how to better follow up evolution and changes, and even then outside

the scope of spatiotemporal data. The workshop on data evolution reported in [RAB+00] enumerates

several open problems concerning keeping track of data changes. Relevant queries pointed out concern

what-, why-, when-, where-, who-, and how-issues, in the same sense as those discussed in the present

paper. In general, related work is mainly concerned with version management and documentation

management. It is described below by separating standard applications

from spatiotemporal applications.

2.1 Standard applications

Studies on documentation maintenance are more frequent in the context of software

engineering, in cooperative work, or in information science in general. Document engineering is now

receiving attention, with a specific conference that discusses standards and tools, for standard

applications [FMM02]. Software engineering research is concerned in particular with keeping track of

 6

software evolution and its document semantics (e.g., [CDF+00]), often by using versioning mechanisms

and associating documents with versions. Interestingly enough, recent results in code evolution and

decay point out to the need for why-, what-, who-, when-, how long- queries [EG+01]. This kind of

research in software engineering is also being motivated nowadays by the need to deal with legacy

systems.

In cooperative work, documents serve as one of the communication means among the several

persons involved, usually to describe how systems have been designed and constructed. Here, the

emphasis is not so much on changes, but on how to retrieve relevant information from stored documents

in order to maximize the cooperation among human or software actors (e.g. [SS98, CD00]). In this

context, there is an increasing demand for why-queries (e.g., in design rationale) and for the follow up

of product development (organizational memory).

Mechanisms for the retrieval of relevant information are left to information science researchers.

The most common approaches rely on document marking, hierarchical organization of documents using

hyperlinks, or metadata annotations. More recently, the emphasis has turned to dynamic document

management facilities, which try to cater to distinct user levels and support context sensitive retrieval,

for instance by taking advantage of active facilities (e.g., [DELS99, DEL+00]).

We base our classification of documents on the work described in [VBJ00] This work

distinguishes between three types of documents (in the context of engineering artifacts):

1. What-documents – e.g., manuals - describe the properties of an artifact, and ensure its

maintainability and usability. They are stored as metadata and textual data. Textual data can

be organized in hypertext/hypermedia graphs [DL96].

2. How-documents describe the process used to build artifacts. They ensure maintainability

and repeatability in reproducing the artifact, and are stored as scientific workflows [AIL98].

3. Why-documents are used to understand the reasoning behind the construction of an artifact,

and are conceptually close to the notion of design rationale of artificial intelligence

[MC96].

In general, however, the management of change documentation has not received much attention from

database researchers. This is clearly influenced by the fact that standard databases do not consider

multiple states for an entity. In the database field, documentation-related research is conducted in the

context of information retrieval and the main problem is related to indexing and organizing documents,

as opposed to the semantics of changes.

2.2 Spatiotemporal applications

The evolution of spatiotemporal objects has motivated several kinds of research (see for instance

[WOR94, PEU94, PT98, TRY98, VCP99]). These approaches address distinct user needs. They vary in

 7

terms of the data models, storage structures, and query constructs adopted. The objects considered may

be static or dynamic, e.g., moving object databases [SWCD97, FGN00, PT00,BJKS01].

In geographic applications, more specifically, documentation can be of fundamental support to

users - for example, to follow up the evolution of cadastral land parcels [SCL99] or to help in the

exchange of geographic data between map producers and customers [BAD98]. The latter issue is an

example of a situation that is becoming widespread and affects all kinds of companies that produce

digital cartographic data (the “map producers”). These digital files are sold to companies that often

embed them in their products. However, in some cases, these companies (the “consumers”) may want to

update the maps according to their own needs -– e.g., adding features that interest that company’s

business. At the same time, the producers will be updating their own maps that will be subsequently

delivered to the consumers. These consumers will then be faced with two updated versions of a given

area. The consolidation of these updates into a consistent digital map is a real problem with many

economic consequences [PJB02]. Another related issue where documentation is needed is the

integration of heterogeneous geographic data. In this case, the integration concentrates on metadata-

based methodologies or, more recently, in the use of ontologies as a basis for semantic comparison –

see, for instance, [Fons01, UOM+98,FLP+03].

2.3 Our approach

The approach taken here is similar to software engineering in the sense that we adopt a

particular versioning mechanism to help manage change documentation. At the same time, we consider

the context-sensitive dimension of information retrieval since we allow distinct levels of documentation

to consider varying user profiles and needs. Unlike all previous research, however, we deal with the

specificities of spatiotemporal change documentation and manage this documentation in an integrated

way within a spatiotemporal database context. Finally, we support why-queries, which, in spite of their

applicability, have so far been ignored by researchers on spatiotemporal querying profiles. We point out

that for change documentation how- and why- queries are feasible only when distinct versions are

available. Such queries only make sense when it is possible to compare different states of the world.

3 Reference example

This section first presents our reference example of spatiotemporal evolution in a geographic database

for an urban development application. This example will be used throughout the paper. We assume that

data are stored in an object-oriented database as it is an appropriate paradigm to model geographic

applications. Moreover, it makes our explanation easier. Notice, however, that our proposal is general

and applies to other types of database management systems such as relational systems extended with

abstract data types (ADT). In this paper, we follow the common database terminology and use the

expression complex (or composite) object to refer to any object that has at least one reference to another

object as opposed to a simple (or atomic) objects that does not have such a reference.

 8

3.1 Data model

We consider a cadastral database representing land parcels in a given region (a 2-dimensional

space). As it is common in geographic applications, each parcel is considered as a geographic object

[RSV01], which is an entity consisting of two components: (i) a description, implemented as standard

(thematic) attributes such as the owner of a parcel and (ii) a spatial component describing the object’s

geometry. The geometry is usually 0-, 1-, or 2-dimensional. A map is a graphical representation of a

collection of geographic objects. A stored map corresponds to the set of objects that completely

describe a region, and that are visualized as the map. The geometry of a parcel is a 2-dimensional

spatial object. Usually, such objects are encapsulated and correspond to spatial abstract data types.

However, in the context of an update-oriented application, we need to access the details of the geometry

of the object (the denoted spatial component above), which follows a spatial data model (see below).

For the sake of simplicity, we consider that the geometry of a parcel is one polygon. A polygon is

defined as a list of line segments describing its boundaries. Each line segment refers to two nodes

representing its extremities.

Two remarks are noteworthy. First, most geospatial applications consider a richer type system

and would associate with such a geographic object a region, defined as a set of polygons as opposed to

a single polygon. This allows non-connected spatial components to be associated with one geographic

entity, for instance, a country composed of a mainland and of islands or other territories. Second,

regarding the terminology, one should not confuse the notions of complex geographic objects and

complex objects in the database sense. The former denotes a geographic entity that may encompass

other entities. For instance a state composed of counties is a complex geographic object. If the spatial

component of a county is modeled as an object in an object-oriented database, then a geographic object

is also a complex object in the (object-oriented) database sense. This is the reason why we prefer, to the

notion of object, the one of type.

In geospatial applications, the major spatial data models usually considered are the spaghetti,

the network, and the topological model. We chose to use a simplified version of the topological model

in which arcs are not associated with nodes. Here nodes only consist of (x, y) coordinates. The

coordinates indirectly provide the geographic location by means of association of (x, y) pairs to some

geographic coordinate system. This association is out of the scope of this paper. However, it is

important to keep its existence in mind, since we are dealing with urban applications and not mere

polygon management. Figure 2 describes the schema of the geographic object Parcel in an object

oriented like language.

 9

Class Parcel type tuple (

 Parcel-no: string,

 Owner: string,

 Soil-type: string,

 Parcel-address: tuple (

 Street : string,

 Zipcode : string),

 Geometry: Polygon

Class Line type tuple (

 Initial_node: Node,

 Final_node : Node)

Class Polygon type list (

 Boundary: list (Line))

Class Node type tuple (

 x: real,

 y: real)

Figure 2. Database schema for parcels and spatial types

3.2 Update Example

Our running example is described graphically in Figure 3. Figure 3a depicts the state of three parcels of

the modeled region, P1, P2, and P3, at time t1. The database objects forming the geometry of the parcels

are represented in italics (with an arrow pointing to the specific object). For instance, the geometry of

parcel P1 is represented by Polygon F1, which is formed by line segments L1, L2, and L3. Line segment

L1 is composed of nodes N1 and N2; L2 is composed of nodes N2 and N3; L3 is made up of nodes N1 and

N3, and so on. Ni, Li, Fi, and Pi are internal database identifiers. They are managed by the system itself

and are not visible to the real world or map-level users. The latter can only manage the external

identifier of the parcel, which is described in the schema by attribute Parcel-no of type string.

Now suppose that the owner of parcel P1 buys the parts of parcels P2 and P3 that are adjacent to

his or her parcel. Before the sale operation can be performed and the boundary change carried out onto

the cadastral map, different legal procedures should be followed in the real world, including:

- A land surveying document should be created by a surveyor.

- A deed concerning the sale operation should be prepared by a lawyer.

- The land surveying document and the deed should be sent to the Land Registry.

Once the sale is performed, the limits of the three parcels are modified on the cadastral map and a new

map version corresponding to the transaction time t2 is obtained. Figure 3b shows this evolution.

Finally, at the database level, the set of boundary changes is translated into a single update: the change

Thematic

attributes

Spatial attribute

 10

of the value of node N3 only. As a consequence, the affected line segments (L2, L3, and L4) and in turn,

the polygons (F1, F2, and F3) are implicitly modified as indicated in Figure 3b.

This simple example illustrates that a complex real world operation involving several people

and legal procedures results in the update of one node in the database. However, it is clear that

recording this kind of update only (i.e., the one database change with associated valid timestamp) is not

enough to satisfy the needs of the urban planners who use the spatiotemporal database.

Suppose, next, that the local authority decides to build a new street passing through the three

parcels of Figure 3b. After the street creation, the new version of the cadastral map, corresponding to

the new state of the modeled world, is presented in Figure 3c, showing the insertion of the street (S) at

database time t3.

Figure 3. Evolution of the geometries of parcels

4 Documenting changes

This section is devoted to our proposal for handling documentation. We first introduce various

abstraction levels in the documentation, and next consider each level. For each of them we take as an

illustration example the running example described previously and we examine the type of

documentation needed.

4.1 Levels of change documentation and types of documents

Following our approach of three levels of changes, we propose the following types of change

documentation:

- The documentation concerning the real world event.

- The documentation concerning the modifications the user performs on the visualized maps.

- The documentation concerning the update of the database.

Besides, we need to refer to various types of documents. Information systems in general deal with

metadata that reflects basic information associated with database objects, in order to find out when,

where, and by whom, among other information, some entity was created or updated. Here we need a

more complex type of documentation, describing different concerns of end users.

In the following, we introduce the concepts of what-, how-, and why-documents. What-

documents describe changed objects at the three levels mentioned previously (real world, cartographic,

New street

t2

L4

P2

L1
F1

N3

N2

N4 N5

F2

L2
N1

N6

F3

t1

a - State of parcels P1, P2 and P3 at time t1. b - State of the parcels at t2.

L2
L3 F1

N3
F2

L4

F3

 c - Creation of a street at t3.

S

P1

t3

F1

F21 F31

F22 F32

 11

and database); how-documents explain how changes are performed; and finally, why-documents provide

the reasons for a change. As we next show, not all levels need all kinds of documentation, since some

documents do not make sense at some levels. Figure 4 shows the basic structure of why- and how-

documents, which belong respectively to classes why-doc and how-doc. Note that classical metadata,

for instance who, is associated with these classes.

Figure 4. Schema of why- and how-documents

The Changes field in the why-doc class, of type “Modification”, is used for query optimization, in order

to allow navigating across documents and map versions. It is only visible at the database level, as

explained in Section 5.

4.2 Real-world documentation

In addition to common metadata, at least two kinds of documents should be considered at the real world

level: why- and how-documents. The first one explains the reasons behind a real world change. As

previously mentioned, it also includes the actors (the who) involved in the change. Figure 5 shows an

example of a simplified why-document for the parcel sale, which explains the reasons for (spatial)

changes, from t1 to t2. Notice that the Who field names the people involved in this sale and then When,

its date in the real world. It is the valid time stamp for the sale transaction, but not necessarily the valid

time stamp for the boundary (spatial) change, which may be different due to legal reasons. The What

field enumerates the geographic objects to which this explanation applies.

.

Figure 5. Why-document concerning a real-world event

Class how-doc type tuple(

Description: text,

Who: string,

When: Date,

Changes: Modification)

Class why-doc type tuple (

 Reason: text,

 Who: string,

 When: Date,

Changes: Modification)

Reason : the sale of a portion of parcels P2

 of Mr Jones and P3 of Mr Paul to

 the owner of parcel P1 (Mr Smith)

(see Deed n° xxx)

Who : Mr Smith, Mr Jones and Mr Paul

When : 01/02/2001

[Changes : …]

Why1

 12

The second one, the how-documentation, consists of several documents (How-doc) concerning the

different legal procedures to be followed for the sale to be really achieved, including:

Hr1: the creation of the land surveying document.

Hr2: the formulation of the deed.

Hr3: the publishing of the legal documents in the Land Registry.

In each how-doc, the Who field refers to the different actors involved in a procedure being described by

the document - e.g., land surveyor, lawyer- whereas the When stores the dates of the different operations

such as land surveying or formulation of deed. Notice again that the dates in real-world why- and how-

document concern the validity of operations. This does not necessarily correspond to database updates

on geographic objects, and thus may not be automatically managed by temporal mechanisms from a

temporal database perspective. Nevertheless, one may consider that these documents are objects with

valid and transaction time stamps.

Besides metadata, additional information can be attached to these documents. For instance, the

how-documentation concerning the land surveying can also include photos of the land parcels or the

surveyor’s map.

4.3 Cartographic level

The major cartographic entity to consider is a map and the associated document is a what-document

containing map metadata. There are several standards for cartographic metadata, which are outside the

scope of this paper (see for instance [GV98] for more information on the topic). Here, it suffices to

know that these standards typically include data such as region coordinates (where) and cartographic

projection, as well as who (cartographer) and when (valid time). Figure 6 presents a possible schema for

a what-document at this level (Class what-doc).

Figure 6. Schema of what-documents

We recall that in our framework the cartographic level is the user interface to the geographic

database. Updates may concern the thematic as well as the spatial attributes of the objects involved. For

instance, the parcel sale requires a map update, which will be propagated to the database by the update

of node N3. As a consequence, future database queries will show the new map version. The what-

Class what-doc type tuple (

Metadata: tuple(fields),

 …

 Who: string,

 When: Date,

 Changes: string)

 When: date }

 13

document will contain all geographic objects affected by the corresponding map version update – the

three parcels. It may further contain metadata fields such as those described previously.

 Thus, why-documents at this level are those that concern the real world changes whereas how-

documents are those that concern cartographic modification. Hence there are no specific why-

documents concerning this level for urban planners. The why is the real world why.

Moreover, different kinds of users may interact at the cartographic level, such as urban planners

or cartographers responsible for maintaining the maps according to predetermined map construction

standards. These users may want to assign a new kind of why-document to the maps concerning these

standards (e.g., parcel boundaries are drawn with line width w because of a given cartographic norm).

One may even consider how-documentation to indicate the order in which map changes were performed

by the users. To simplify the example, however, we limit ourselves to one type of users only – the ones

concerned with urban planning, who are not interested in the niceties of cartographic production.

4.4 Database level

At the database level, the main documents concern why and how database updates are performed. The

when at this level can either be directly found from the spatiotemporal transaction timestamp or stored

in a how-document. What-documents describe an entity’s properties. At the database level, this

corresponds to schema and extension (the stored data). There is no need for creating specific documents

for this kind of information, since the DBMS automatically handles this. The why of a database change

is in fact that one needs to reflect real world changes. Thus, there are no new why-documents created for

this level and the why at this level is again the real world why.

How-documents at this level describe how an update is actually performed. They contain the

whole process of the update of an object from the cartographic level down to the database level. Here

the concern is to explain the steps taken to update the database. As we shall see, how-documents at this

level are not stored, but derived from the fact that a geographic object has changed. Thus, for instance,

the updates of the (database object) parcel P1 that reflect the cartographic changes from the map version

at time t1 to the map version at time t2 are associated with the following “how reasoning”:

Hd1. P1 changed “by changing the Geometry”,

Hd2.The geometry of P1 has changed “by changing polygon F1”,

Hd3. Polygon F1 has changed “by changing L2 and L3”,

Hd4. L2 and L3 have changed “by updating node N3”,

Hd5. N3 has changed “from (x3, y3) to (x31, y31)”

This reasoning can also be used at the cartographic level to explain how a given map is constructed.

However, at the cartographic level, usually only the first kind of procedure is needed. For instance, the

query “How was map version at t2 constructed?” may have an answer such as “By starting from the

map at time t1 and changing the geometry of parcels P1, P2, and P3”.

 14

So far, we have exemplified each level of documentation considering only the transition from t1 to t2

(and the corresponding spatiotemporal database changes). The same kind of documentation procedure

will apply to any such transition, and the corresponding documents are to be stored in the database.

Thus, for the real world evolution from t2 to t3 (street creation), there will be at least:

- Real world level why- and how-documents associated with the street and parcels affected.

- Cartographic how-procedures and what-metadata associated with the new map version at t3.

- Database updates that allow describing how the parcels (and their components) were

affected, and how the street construction was reflected in the spatiotemporal database.

To sum up, any real world change is documented by distinct kinds of why-, how- and what-

documents. These documents differ in terms of the level they are concerned with and the kind of user

who needs to access them. Document contents are used to derive the procedures and reasons for

evolution (reflected at the database level by spatiotemporal updates). Documentation is dynamic in the

sense that it follows this evolution and that it is context-sensitive.

5 Implementation

The whole idea of dynamic change documentation in a database requires, among other things, the use of

a version mechanism. We chose to use the multiversion database mechanism of [CJ90] to manage the

distinct versions of the stored objects (corresponding to the different states of the world). We recall that

the documentation related to the update of a complex object may concern several of its components.

5.1 The implemented version mechanism

The multiversion database mechanism lets end users see the geographic database as composed of a set

of independent map versions, representing the same area, which coexist within the same storage space.

This means, for instance, that each map version can be managed (read and updated) separately and

independently from the other map versions of the same region. At the user level, a new map version is

always generated or derived as a (logical) copy of an existing map version.

At the database level, one important feature of the multiversion database mechanism is that it

automatically allows keeping track of all database objects that “fit together”, i.e., that compose a

consistent database state. As is typical in any temporal application, several versions of the same real

world object coexist in a database (e.g., the different parcel configurations at the distinct time frames).

This gives origin to the concept of multiversion object, which can be described in a simplified manner

as being a “repository” of all versions of a given object. Going back to Figure 3, for instance,

multiversion object “parcel P1” is in fact a complex object, which encapsulates all different states of P1.

The multiversion database mechanism automatically puts each object version in a different database

state – e.g., P1 at time t1 and P1 at time t2 correspond to distinct states of the parcel, and thus different

database states.

 15

From a performance point of view, one of the main advantages of the mechanism is that it

minimizes storage occupancy and avoids redundancy while storing the multiple versions. Again at the

cartographic level, when map features are updated, a new map version is generated. At the database

level, however, instead of storing the map data twice, the mechanism just records the updates and

unmodified objects are stored only once in the database. The relationship among the distinct (stored

map) versions is recorded in a structure called map version tree. Furthermore, updates to objects in one

map are handled without affecting other map versions, by appropriate management of internal version

identifiers.

To obtain the value of an object in a stored map version, the system applies a rule stating that it

has the same value as that in the map version from which it is derived, except if another value is

explicitly specified. This rule is recursive and called implicit sharing rule. When an object is deleted in

a map version, its value in the database is set to ⊥, meaning it does not exist. When an object O in a

map version v is involved in a group operation – e.g., splitting or merging operation on land parcels -

the link between O and the resulting object(s) is stored in a genealogy tree [SCL99]. A special value #

for O in map version v is used to denote a group operation. When geographic objects are created from

one or several other geographic objects – i.e. the object has one or several ancestors – the resulting

geographic objects are initialized with a special value “*” in the map version parent of the map version

in which the operation has been performed. Thus, the genealogy graph represents 1-to-N, N-to-1 and N-

to-M evolutions of geographic objects.

The system uses the internal identifier of objects to follow the evolution of these objects

through time. Internal identifiers are managed only by the system, conversely to external identifiers,

which are managed and accessed by users. For further details the reader is reffered to [BJ93, GJ94,

CJ00].

Illustration of the multiversion mechanism

Figure 7 shows part of the database without documentation, indicating how different objects

evolve, under the perspective of the multiversion mechanism. Versions M1, M2, and M3 correspond

respectively to times t1, t2, and t3. The map derivation tree shows that map version M2 has been derived

from map version M1; and that M3 is derived from M2.

In a simplified manner, each multiversion object corresponds to a table, where each line

concerns a version. Thus, multiversion object N3 has three versions recorded, for stored map versions

M1, M2 and M3. This means that at time t1, N3 has value (x3, y3), (first entry of the table), at time t2, its

value is modified to (x31, y31), and at t3, its value is ⊥, meaning that is does not exist.

Furthermore, the Figure seems to show that multiversion object P1 has only one version

corresponding to map version M1, and that F1 and L3 have two versions each. This is, however, not true,

and is in fact due to the management of complex objects [AHV95] and multiversion complex objects

[CJ00]. The database stores the shallow value of objects. Thus, for complex objects (having references

 16

to other objects), the identifier of the referred objects are stored. But, on a map version, access is

granted to the deep value of complex objects. In the deep value of an object, the identifiers of referred

objects are recursively replaced by the value of the referred object. For instance, in Figure 7, N3 has

three (shallow) values stored - (x3, y3), (x31, y31) and ⊥ , whereas the shallow value of L3 is (N1, N3) in M1

and M2. However, for the user visualizing map version M1 (see Figure 2b), L3 is represented by the line

with extremities (x1, y1) and (x3, y3) (deep value), while in map version M2, it is represented by the line

with extremities (x1, y1) and (x31, y31).

Suppose that the user wants to know what L3 looks like in map version M2. The system

“constructs” this version of L3 recursively as follows:

1) Retrieves the state of L3 for map version M2

1.1 The multiversion object L3 has no entry for M2. This means that the line did not

change its components at t2. This means that the shallow value of L3 is the same as

in M2 and M1, the map version from which M2 was derived .

1.2 The derivation tree shows that M2 is derived from M1

1.3 The components of L3 in M1, and thus M2, are N1 and N3 - the same as in M1.

2) Retrieves the value of N1 in M2 following the same procedure (using the derivation tree to

obtain the ancestor of the map version M2 - i.e., M1 - and reading the value of N1 in M1). The

value of N1 in map version M2 is thus (x1, y1).

3) Retrieves the state of N3 at M2, which is obtained directly from the second entry of the

corresponding multiversion object.

4) Constructs the deep value of L3 in M2, using the values of its components (N1, N3), which

are ((x1, y1), (x31, y31)).

The same kind of reasoning is applied to all composition levels – e.g., parcel P1 for map version M2 has

the same components as for map version M1, and its geometry is described by F1. Next, polygon F1 for

map version M1 is retrieved followed by its component lines, finally reaching the node level.

 17

Figure 7. Part of the database state without changes

5.2 Storing documents

In order to avoid duplications and possible inconsistencies, the adopted strategy is to store each

document only once. Let us now consider the evolution of an entity over time together with the

documentation associated with its successive changes. For instance, we recall that the what-

documentation at the cartographic level corresponds to map metadata. From the versioning mechanism

point of view, this means that the what-documents must be associated with a map version as opposed to

individual object versions. Why- and how-documents, however, are associated with individual objects.

Each document is also a multiversion object, managed jointly with the associated geographic

object. A real world why-document affects many objects (e.g., one why-document for parcels P1, P2,

and P3). The difficulty here is that the document should be stored only once to avoid redundancy in the

database, while at the same time maintaining links to all objects. Furthermore, to speed up queries, one

should be able to navigate from one kind of document to another. The solution adopted was to create a

multiversion table that links, to each map version, all the modifications, the corresponding change

documentation, and the real world objects affected.

Figure 8 shows a partial view of the database including multiversion document objects. Two

new database objects are introduced:

(1) « Doc-Modif-Table » associates each map modification with the corresponding why-, how-,

and what-documents. For each modification, the system creates the documents, for which

 F1

 N3

M1

M2

M3

 Map version tree

 P1

MapVersion-id

M1 [35B1 Smith … F1]

Value

 L3

Value

(x3 ,y3)

 ⊥

(x31 ,y31)

MapVersion-id

M1

M3

M2

MapVersion-id Value

[L 1, L2, L3] M1

… M3

MapVersion-id Value

 [N1,N3] M1

… M3

Deletion of the node in M3

Update of the node in M2

Creation of the node in M1

MapVersion

-id M1 (x1,y1)

Value
N1

 18

the user enters the necessary information. Furthermore, to speed up queries, an index can be

created to link each map version with the corresponding modification identifiers.

(2) « Modif-Table » details the modifications, by associating a modification identifier with the

identifier of updated objects and the map version in which these updates are performed.

Each time the (shallow) value of an object is changed, a trigger inserts a new record in this

table.

For instance, when N3 is updated in M2, a trigger inserts a new record in the Modif-table

corresponding to the first line of the table in Figure 8. Doc-Modif-Table contains the identifiers of the

different change documents corresponding to Modif1, which, in turn, points at the relevant real world

why-document (Why1) and how-document (How1), and database what-documents (What1). In this case

What1 refers to only one object, N3. However, in a major update it would point to all the updated

objects. The what-document shown in Figure 8 refers only to the parcel change. However, a what-

document for the street construction (Figure 3c) would require a much longer description, since several

database and real life objects are affected.

Finally, stored map versions might be created only after several modifications are made. For

instance, a new map version M4 may be created if all parcels neighboring the street are bought by the

municipality (Modif3 for map version M4) and the street is enlarged, occupying part of these parcels

(Modif4).

Figure 8. Part of the database state with change documentation

Documentation corresponding

to the sale operation
Documentation corresponding

to the street creation

Doc-Modif -Table

The Why documentation for the parcel

REASON : the sale of a portion of parcels
P2 of Mr Jones and P3 of Mr Paul to the
owner of parcel P1 (Mr Smith) (see Deed
no xxx)
WHO : Mr Smith, Mr Jones and Mr Paul
WHAT: (parcel_no=11B,…)
WHEN : 01/02/2001
[CHANGES: Modif1]

Why1

The HOW real world
documentation consisting of
three how-docs as
described in section 4.1.

How1
Hr1 Hr2 Hr3

DESCRIPTION: The creation of
the land-surveying document.
WHO:J.Thomason(Land surveyor)
WHEN: 01/01/2001
[CHANGES: Modif1]

Hr 1

Documentation objects

Modif1 Why1 How1

Modif2 Why2 How2

Modif-id WHY-id HOW-id WHAT-db

What1

What2

Modif -Table
MapVersion-id

M2

M3

Modif-id

Modif1

Modif2

Object-id

N3

…

(N3) What1

 19

All other structures needed to handle versions are not declared at the database schema level because

they are handled internally by the version mechanism [CJ94].

5.3 Querying the update documentation

The previous section explained how update documents are stored. The documentation of changes in a

spatiotemporal database extends the range of spatiotemporal queries a user can express. Examples of

such queries for our application domain are:

1. What objects have changed between time t1 and t2?

2. What is the difference between map version M1 and M3?

Pointing at P1 in map version M2:

3. Why has this parcel changed?

4. How has the change occurred in the real world?

5. Who was responsible for performing the corresponding database change?

6. How was the change performed in the database?

7. What are the objects involved in this parcel change?

8. What are the names of the owners of the parcels affected by this change?

Finally, at the database level, the Database Administrator may want to know:

9. Why did N3 change between t1 and t2?

Whereas queries 1 and 5 (and possibly 7) may be conceivably implemented in standard

spatiotemporal databases, the other queries require dynamic documentation and a versioning

mechanism. This section gives a few examples of ways some of these queries can be implemented. For

map version M2, it is assumed here that the user has already selected this map for analysis and wants to

find out about its evolution. We show how to deal with queries 1, 3, 4, 5, 6 and 7. To answer queries 2

and 8, the distinct versions must be compared.

5.4 Real world level queries

Looking for documents concerning the why and the how of the evolution of real world objects is a

straightforward operation. It suffices to read the specific why- and how-documents associated with the

objects. This solves queries 3 and 4, where the versioning system will recover the appropriate document

version.

5.5 Cartographic level queries

At this level, what details are obtained from the metadata document associated with a stored map

version. The why-document for an evolution of a cartographic object is the same as its real world why-

document. The answer to query 5 is obtained from the who field of the how-cartographic-document,

associated with the map version. Again, why- and how-documents are obtained directly.

 20

5.6 Database level queries

First, let us consider why-queries. Two types of why-queries can be distinguished:

- queries concerning objects that correspond to real world objects (e.g., a parcel)

- queries concerning components of geographic objects, especially their geometry (e.g., node

N3).

In the first case, the why-document is obtained directly from the corresponding multiversion object. In

the second case, the system must go “bottom-up” following the database schema of object composition

until a real world entity is found, and then retrieve its associated why-document.

For instance, when looking for the why-document concerning the update of the node N3 in M2

(query 9), the system:

1. First obtains from Modif-table (see Figure 8) the Modif-id, Modif1 corresponding to M2;

2. Then finds the Why-id, Why1, corresponding to Modif1 in Doc-Modif_Table;

3. Finally retrieves the associated why-document corresponding to the parcel, which contains the

names of the owners.

For building the “how” reasoning, at some composition level of a composite object, the system

navigates top-down, using the database schema, until it reaches that object’s simple components. Thus,

for instance, a how-query at the line level will explain line and point updates; a how-query at the

geometry level will return polygon - line - node update how-documents. For instance, in order to know

how parcel P1 has been updated in the database at time t2 (query 6), the system:

1. First deduces the class composition hierarchy of the class Parcel which is [Parcel, Polygon,

Line, Node]

2. Then navigates through the composition hierarchy of the components of parcel P1, in the

specific map version, until it reaches the object that has been physically updated (N3). For

this it selects for map version M2:

- polygon F1, the first level component of P1

- the lines L1, L2, and L3, which are components of F1,

- the nodes N1, N2, and N3, components of lines L1, L2, and L3. It deduces that N3 has

been updated in M2, since it has an entry for this map version

3. Finally builds the how-reasoning by deducing the part of the composition hierarchy of P1

that refers to N3 - i.e., the polygon F1, the lines L2 and L3, and the node N3.

This reasoning can be generalized by an algorithm whose basic principle is explained below.

There are two possible cases:

- The user may either point to an object whose shallow value has changed (e.g., N3 in M2) (Case 1),

- or may choose an object whose deep value has changed (e.g. P1 in M2) (Case 2).

In Case 1, the system:

 21

1. First extracts the object identifier and the map version identifier (e.g., N3 and M2),

2. Then extracts the corresponding modification identifier from the Modif-Table (e.g. Modif1),

and the identifiers of all documents (why-, how-, and what-documents) from the Doc-Modif-

Table, (e.g. why1, how1, what1)

3. Finally extracts the contents of these documents, and particularly the identifiers of all the

objects, whose shallow values have been modified by Modif1 (e.g. here, only N3)

In Case 2 (when the deep value of the pointed object is changed in the map version) the system needs

to find out the elementary components whose shallow values have been modified (e.g. P1 in M2):

1. First, the system extracts the object identifier and the map version identifier (e.g., P1 and

M2),

2. Next, it deduces the class composition hierarchy of the object - here, the class hierarchy is

[Parcel, Polygon, Line, Node]

3. Then it navigates through the composition hierarchy of the components of the object in the

specific map version (e.g., parcel P1), until it reaches the objects that have been physically

updated in the specific map version. See the previous discussion for query 6, which starts

from polygon F1, passes through the three lines L1, L2, and L3, which form this polygon, and

then to their nodes to reach N3, the only node affected.

From then onwards, the system proceeds as in Case 1 to obtain the modification identifier.

In general, real world modifications imply the update of more that one object in the database,

while the example used in this article, portrays a very simple situation aiming at explaining our

approach. For instance, in the road construction, many nodes may be created, deleted or updated. The

list of all the updated nodes is obtained from the what field of the corresponding modification. Then,

from this list, all geometric and geographic objects concerned by the modification can be deduced as

explained in Cases 1 and 2.

From a performance point of view, these distinct documents are stored as database objects.

Querying can be performed using the OQL object query language. For instance, document Why1 can be

retrieved as an instance of class why-doc using the following query expression

Select q -> reason

From q in WHY //WHY is the persistency root of WHY-DOC objects

Where q.oid = WHY1

Alternatively, documents can be interactively examined by clicking on maps. In this case, the

corresponding queries are generated when the interface captures the click action.

 22

6 Prototype description

This section presents the prototype implemented at the University of Paris at Dauphine which supports

interactive queries. Our proposal was implemented using the MapInfo GIS [MapInfo02], which was

extended with the multiversion mechanism and additional database and interface facilities in order to

query documentation and trace data evolution. Interactive queries were mapped to SQL.

The prototype supports two kinds of interactive modes, namely query and update. Within the

query mode, users can navigate through the several stored map versions in a database and query

different documentation aspects, at the three levels concerned. The update mode concerns any kind of

data insertion, deletion or modification, either thematic or spatial. In this case, the user is prompted by

the system to provide all relevant documentation to be stored in the database together with the actual

data being changed. The language of the prototype interface is French. However, our explanation text

will provide translation details, when relevant. We point out that all interactions are performed within

an enhanced version of MapInfo. The basic interface is a MAPINFO interface with additional menu

options. Thus, the user is not required to switch to a new system in order to query or update maps; all

happens within the GIS environment.

6.1 Update mode

From a GIS point of view, users can edit or modify thematic or cartographic data as usual. The

difference, however, is that the prototype allows the users to update data within the Documentation

mode. If the user chooses to use the GIS within this mode, the prototype prompts the user to provide all

necessary documentation by means of forms to be filled. Figure 9 gives a brief indication of some of the

kinds of information the user is asked to provide at this mode, for cartographic and real-world levels.

The leftmost part of Figure 10 schematically shows the sequence of actions performed by the

system to request from the user the documentation information needed. The right part of the Figure

shows the geometric updates performed on the spatial data while the documentation forms are filled.

• Why is the update performed

• Who are the people involved in the update : …….

• Real world date of the modification : …..

• Person responsible for cartographic update : ……

• Relevant dates concerning cartographic update : …..

• Objects involved in update : ……..

• Textual description of cartographic updates : ….

Figure 9 Partial description of documentation data required from user (update mode)

Real world map level

documentation

Cartographic level update

documentation

 23

Figure 10. Workflow of actions requested from the user to document modifications (update mode)

Figure 11 shows the initial interaction screen for entering documentation. The menu bar is a

MAPINFO menu (in French) extended with Version and Documentation sets of commands. Version

commands allow manipulating and creating map versions. Documentation commands are issued to

enter update and query modes.

Consider now that the user has chosen to document a map version. Figure 12 shows that the

user has provided a date – 01/01/1996 - to indicate selection of the map version (Selection d’une version

de carte). The user can choose any of the three documentation levels and four types of documents

(respectively checklists at the left and right sides of the screen). The four types of documents are why

(Pourquoi), how (Comment), what (Quelles – literally, which ones) and other queries (Autres). The text

to the right helps the user select options within the query.

Cartographic

level

L2

1.1.1.1.1.1.1.1.1

L1

L8

L4

L5

L6

L7 L3

1.1.1.2

1.1.1.3

1.1.1.4

1.1.1.5

2
2.1.1.1

2.1.1.1.1.1.1.1.1

2.1.1.1.1.1.1.1.2
P3

P1

P2

Select a map version

Create map version

Request documentation data

Get data from forms
Interactive system-user dialogue via fill in forms

Validate

L1

L2

L8

L4

L5

L6

L7 L3

2.1.1.2

2.1.1.3

2.1.1.4

2.1.1.5

N5

2.1.1.6

2.1.1.6.1.1.1.1.1
2.1.1.6.1.1.1.1.2

2.1.1.6.1.1.1.1.3
P2

P1

P3

 24

Figure 11. Initial screen for entering documentation (update mode)

The user can then select on a map the spatial items requiring updates, and indicate the kind of

update. Figure 12 shows that the user selected «Thematic update » (Changement thématique) of three

polygons (by clicking – see darker polygons). Figure 13 shows that the new values are being typed for

some of the attributes of these polygons. After prompting for documentation, WHY-HOW-WHAT-

WHO forms appear at appropriate moments, as indicated in Figure 14. The rest of this section is

concerned with showing some details of the querying mode.

 25

Figure 12. Creation of a new map version - thematic modifications

Figure 13. Fragment of the thematic data table for the selected polygons (thematic modifications)

 26

6.2 Query mode

 In the query mode, the user first selects a map version and then performs queries concerning the

documentation of either this map alone or this map and the precedent map version (i.e., to find out the

differences). User interaction varies with the user’s goals. Some queries require only clicking on menus

or icons whereas others combine this interaction with typing of parameters (e.g., date, or author name).

Finally, other queries are performed directly by interacting with cartographic displays. Let us simulate a

typical user session.

 The user starts a querying session by entering the Documentation module from an enhanced

MapInfo menu – see Figure 12. This figure shows the initial screen for this module. Figure 14 displays

the map version chosen, as well as subsequent interaction choices for querying the map. The

Documentation menu, outlined, allows the user to choose among the following items (menu at the

middle, from top to bottom): Choose a map version (Choix d’une version de carte pour la

documentation), Indicate the objects modified in a map version, Real world documentation,

Cartographic documentation, Database documentation, Differences between a version and other

versions. The figure shows that the user selected to see the Documentation of the real world

(Documentation du Monde Réel).

Figure 14. Query mode - real-world documents

 27

Within this documentation item, the user can then select to see (leftmost menu, from top to

bottom) the following: Why this change (Pourquoi ce changement), objects affected by the change

(Quels sont …), how (Comment) the change was made, who (Quelles…)are the people involved in this

change and when (Quand) this change occurred in the real world. Similar menus can be activated for the

Cartographic and Database documentation levels, covering the same kinds of queries.

 These queries concern documentation for an entire map version. Alternatively, the user can

select objects within a map and ask to see which of these objects were changed from a previous version

– see Figures 15 and 16. Figure 15 indicates with a different background color the user query (the

parcels selected via clicks by the user). Figure 17 shows that polygonal objects P3, P2 and P6 were the

ones actually modified within the selected set.

Figure 15. Query mode - selection of objects from a map version

 28

Figure 16. Query mode – information on which objects were changed

Now, the user selects Polygon P3 (see Figure 16) to find out more about the changes it

underwnet. On clicking the OK button, Figure 17 appears. It describes textually the actual modifications

of P3 in this version, as compared to its precedent map version. The information given is « The

description of the map changes are the following – modification of parcels P2, P3 and P6 by downward

displacement of node N3”. Notice that this is the text entered by the person who performed the update,

and it is assumed that the user is an expert who knows what to enter. This figure also indicates the name

of the person who performed this specific update (Syphax) and the date in which this update was

performed (07/09/2001).

Figure 17. Query mode: textual description of how-, who-, and when-documents

 29

Last but not least, the user may also find out more about updates by clicking on document

buttons. Figure 18 shows an example of this kind of interaction. The textual information box labeled

Documentation that covers part of the concerns all real world events that caused the map change. The

box provides click-on buttons to two real world objects concerning this modification (2B1 and 3B1).

Clicking on each of these buttons will give information on the corresponding objects. The bottom part

of the Figure concerns information on 2B1, which happens to concern Polygon P2 – identifier, owner

name, kind of soil, address. The text covering the map describes the following real world events: it

informs that the event recorded is the sale of Parcel 3B1, owned by M. Samir, to M. Ali, owner of

parcel 2B1. Furthermore, it explains the parcel was sold on 15/01/2001 and mortgaged by M. Syphax

on 30/01/2001. Finally, it indicates that the people involved in the sales transaction are M. Idir and M.

Ali. For more details on this prototype the reader is referred to [Pee01].

7 Conclusions

Documenting changes in a spatiotemporal database is an important feature which has, however, been

neglected so far by the research community. This paper focused on documentation management in this

context at many levels of abstraction. We introduced two orthogonal notions. The first one is the notion

of level of changes in a spatiotemporal application. We considered three levels: real-world level,

cartographic level, and database level, all corresponding to various user contexts: real world concerns

(e.g., a surveyor), cartographic presentation (e.g., city planner), and database management (e.g., DBA).

Changes may be introduced at each level. The second notion introduced here is the type of

documentation associated with changes. Beside classical metadata, which has been a common notion in

information systems for years, we introduced other types of documents associated with changes, namely

what-, how-, and why-documents. Each of them may encompass classical metadata such as when and

who. We exemplified our approach through an application centered on urban development.

 30

Figure 18. Real-world documentation of objects displayed on the map

When the user clicks on

document 2B1, the system

gives information on P2.

 31

In our approach, why-, how- and what-documents are stored as complex multiversion objects in

the database. They are associated with geographic objects in order to document the reasons, the

procedures, and the originators of changes. Our framework can be extended to accommodate as many

kinds of user and document fields as needed. It caters to a real user need: to better understand the

evolution of real world phenomena. Dynamic documentation can also be used to support exchange of

geographic data, and is thus a step towards interoperability.

This proposal was implemented in a prototype at the University of Paris at Dauphine (Paris IX),

within the LAMSADE laboratory. Both the development and testing of this version were followed by

experts from the French National Cartographic Institute (IGN). Some of the interface facilities were

included to adjust to their experience in terms of real user needs. One of the nice features of this

prototype is its seamless integration with the underlying GIS (MapInfo), which does not require the user

to quit the GIS environment to either document data updates or to query map versions.

Even though this paper is centered on geographic urban development applications, the rationale

used here can be applied to other spatiotemporal domains – e.g., environmental planning. What is

needed in each case is a good understanding of users’ needs in order to determine the relevant change

levels and the necessary documentation to be associated at each level. This kind of requirement analysis

is an important trend for future work.

There are, moreover, several other kinds of need for change documentation. Another important

issue, briefly mentioned in Section 3, is that of cartographic production. Geographic data are provided

to several kinds of clients (e.g., power company, street maintenance authorities, cadastral offices), who

update portions thereof according to their needs. At the end, these data need to be consolidated, to

provide a global view of the world (and, for cartographers, a single map version). This consolidation

requires analyzing the individual updates, often containing conflicting information. Here, again, proper

dynamic documentation will help manage these inconsistencies. We are currently considering this kind

of integration.

Acknowledgements. The work reported in this paper was partially financed by a bilateral cooperation

program CNPq/Brazil and CNRS/France. French grants also include help from the Université Paris IX.

Brazilian financing was complemented by research grants from CNPq and FAPESP, and by the

PRONEX/MCT Project on Advanced Information Systems (SAI) and the CNPq WebMaps project. The

authors gratefully acknowledge the help of M. Badard from IGN and Mouloud Hedjar for his work in

developing the prototype. Part of the work reported here has appeared in [PMJ01].

 32

8 References

[AIL98] Ailamaki, A., Ioannidis, Y., and Livny, M.: Scientific Workflow Management by

Database Management. In Proceedings 10th IEEE International Conference on

Scientific and Statistical Database Management, 190-201, 1998

[AHV95] Abiteboul, S., Hull, R., and Vianu, V.: Foundations of Databases. Addison-Wesley,

Reading, MA, 1995

 [BA94] Böhm, K. and Aberer, K.: Storing HyTime documents in an object-oriented databases.

In Proceedings of the third Iinternational Conference on Information and Knowledge

Management (CIKM), 26-33, 1994

[BAD98] Badard, T.: Towards a generic updating tool for geographic databases. In Proceeding of

the International GIS/LIS Conference, 352-363, 1998

[BFS00] Buneman, P., Fernandez, M., and Suciu, D.: UnQL: A query language and algebra for

semistructured data based on structural recursion. The VLDB Journal, 9(1)1-110, 2000

[BJ93] Bauzer-Medeiros C., Jomier G.: Managing Alternatives and Data Evolution in GIS. In

Proceedings of ACM Workshop on Advances in GIS (ACM/GIS), ACM Press, 1993

[BJKS01] R. Benetis, C. S. Jensen, G. Karciauskas, and S. Saltenis, Nearest Neighbor and Reverse

Nearest Neighbor Queries for Moving Objects. TIMECENTER Technical report TR-66

[CACS94] Christophides, V., Abiteboul, S., Cluet, S. and Scholl, M.: From structured documents

to novel query facilities. In Proceedings of the ACM Conference on the Management of

Data (ACM SIGMOD), 313 – 324, 1994

[CD00] Cassati, F. and Discenza, A. Supporting Workflow Cooperation Within and Across

Organizations. In Proceedings of the International ACM Symposium on Applied

Computing, Vol. 1, 196-202, 2000

[CDF+00] Cattaneo, F., Di Nitto, E., Fuggetta, A., Lavazza, L. and Valetto, G.: Managing software

artifacts on the Web with Labyrinth. In Proceedings of the International Conference on

Software Engineering, 746 – 749, 2000

[CJ90] Cellary, W. and Jomier, G.: Consistency of versions in object-oriented databases. In

Proceedings of the Very Large Database Conference (VLDB), 1990

[CJ00] Cellary, W. and Jomier, G.: The Database Version Approach. Networking and

Information Systems Journal, Hermes, Vol. 3, No 1, 177 - 214.

 [CR94] Christophides, V. and Rizk, A.: Querying structured documents with hypertext links

using OODBMS. In Proceedings of the ACM European Conference on Hypermedia

Technology, 186-197, 1994

[CT95] Claramunt, C. and Thériault, M.: Managing time in GIS: an event oriented approach. In

Recent Advances on Temporal Databases, Clifford, J. and Tuzhilin, A. (eds). Lecture

Notes in Computer Science No. 1021, Springer Verlag, Berlin/Heidelber/New York,

23-42, 1995

 33

[DL96] Dattolo, A. and Loia, V.: Collaborative Version Control in an Agent-based Hypertext

Environment. In Information Systems, 21(2):127-145, 1996

[DELS99] Dourish, P., Edwards, W. K., LaMarca, A. and Salisbury, M.: Presto: An experimental

architecture for fluid interactive document spaces. ACM Transactions on Computer-

Human Interaction, 6 (2), 133 – 161, 1999

[DEL+00] Dourish, P., Edwards, W. K., LaMarca, A., Lamping, J., Petersen, K., Salisbury, M.,

Terry, D.B. and Thornton, J.: Extending document management systems with user-

specific active properties. ACM Transactions on Information Systems, 18 (2), 140 –

170, 2000

[EGK+01] Eick, S.G., Graves, T.L., Karr, A. F., Marron, J.S., and Mockus, A.: Does Code Decay?

Assessing the Evidence from Change Management Data. IEEE Transactions on

Software Engineering, 27(1), 2001

[FGN00] Forlizzi, L., Güting, R.H., Nardelli, E., and Schneider, M.: A Data Model and Data

Structures for Moving Objects Databases. In Proceedings of th. ACM Conference on the

Management of Data (SIGMOD), 319-330, 2000

[FLP+03] Fileto, R., Liu, L., Pu, C., Medeiros C. B. and Assad, E.: POESIA – an Ontological

Workflow Approach for Composing Web Services in Agriculture. In The VLDB

Journal, 2003.

[Fons01] Fonseca, F. Ontology-driven Geographic Information Systems. PhD Thesis, University

of Maine, USA, June 2001

[FMM02] Furuta, R., Munson, E. and Maletic,J. Editors. Proceedings of the 2002 ACM

Symposium on Document Engineering, ACM Press, 2002.

[GJ94] Gançarski S., and Jomier, G.: Managing Entity Versions within their Context: a Formal

Approach.In Proceedings of Database and Expert Systems Applications Conference

(DEXA), 1994

[GML02] OpenGIS.: Geographic Markup Language GML 2.0.

http://opengis.net/gml/01029/GML2.html. OGC Document Number: 01-029, February

2001. (As of March 2002)

[Grice02] Grice,R. Some reflections on the Emergence of a Profession. ACM Journal of

Computer Documentation, 26(3):126-129, 2002.

[GV98] Günther, O. and Voisard, A. Metadata in Geographic and Environmental Data

Management. In Managing Multimedia Data: Using Metadata to Integrate and Apply

Digital Data, W. Klas, A. Sheth (Eds.), McGraw-Hill, San Francisco/New York, 1998.

[LAN92] Langran, G.: Time in Geographic Information Systems. Taylor and Francis, London,

1992

[MapInfo02] The MapInfo GIS Software home page. URL: http:www.mapinfo.com, 2002

 34

[MC96] Moran, T.P., and Carroll, J.M.(eds.): Design Rationale: Concepts, Techniques and Use.

Laurence Erlbaum Associates, 1996

[Pee01] Peerbocus, M.A. Management of spatiotemporal evolution in a geographic database.,

Phd thesis, University of Paris at Dauphine (Paris IX), France, December 2001

[PEU94] Peuquet, D.J.: It's about time: A conceptual framework for the representation of the

temporal dynamics in geographic information systems. Annals of the Association of

American Cartographers, 84(3), 441-461, 1994

[PJB02] Peerbocus, M.A., Jomier, G. and Badard, T.: A methodology for updating geographic

databases using map versions: 10th International Symposium on Spatial Data Handling ,

2002.

[PMJ01] Peerbocus,M. A, Medeiros, C. B., Jomier, G. and Voisard, A. : Documenting Changes

in a Spatiotemporal Database. Proc. XVI Brazilian Database Symposium, 10-24, 2001

[PT00] Pfoser, D., and Theodoridis Y. : Generating Semantics-Based Trajectories of Moving

Objects, In Proceedings of the International Workshop on Emerging Technologies for

Geo-Based Applications, 2000

[PT98] Pfoser, W. and Tryfona, N.: Requirements, definitions and notations for spatiotemporal

application environments. Proceedings of ACM Workshop on Advances in GIS

(ACM/GIS), ACM Press, 1998

[RAB+00] Roddick, J., Al-Jadir, L., Bertossi, L. et al.: Evolution and change in data management –

Issues and directions. ACM SIGMOD RECORD 29(1), 21-26, 2000

[RS95] Rusinkiewicz, M. and Sheth, A.: Specification and Execution of Transactional

Workflows. In W. Kim, (ed.): Modern Database Systems. The Object Model,

Interoperability and Beyond, ACM Press, 592-620, 1995

[RSV01] Rigaux, P., Scholl, M., and Voisard, A.: Spatial Databases – With Application to GIS.

Morgan Kaufmann, San Francisco, 432p. 2001

[SCL99] Sperry, L., Claramunt, C. and Libourel, T.: A lineage Metadata Model for the Temporal

Management of a Cadastre Application. In Spaccapietra, S. and Pissinou, N., (eds.):

Proceedings of the International Workshop on Spatio-temporal Models and Language,

1999

 [SS98] Schmidt, K. and Simone, C.: Taking the distributed nature of cooperative work

seriously. In Proceedings of the 6th Euromicro Workshop on Parallel and Distributed

Processing, 295-301, 1998

[SWCD] Sistla, A.P., Wolfson, O. Chamberlain, S. and Dao, S.: Modeling and Querying Moving

Objects. In Proceedings of the Thirteenth International Conference on Data

Engineering (ICDE), 1997, 422-432

[TRY98] Tryfona, N.: Modeling Phenomena in Spatiotemporal Applications: Desiderata and

Solutions. In Proceedings of the 9th International Conference on Database and Expert

 35

Systems Applications (DEXA). Lecture Notes in Computer Science Springer Verlag,

Berlin/Heidelberg/New York, 1998

[UOM+99] Uitermark, H. van Oosterom, P., Mars,N. and Molenaar, M. Ontology-Based

Geographic Data Set Integration. In Proceedings of the Spatio-Temporal Database

Management, International Workshop STDBM'99, Edinburgh, Scotland, September 10-

11, 1999, Proceedings. Lecture Notes in Computer Science, Vol. 1678, Springer, 1999

[VCP99] Valsecchi, P., Claramunt, C. and Peytchev, E.: OSIRIS: An International Operable

system for the Integration of Real Time Traffic Data within GIS. In R. Laurini (ed.),

Proceedings of the 1st Telegeoprocessing Conference, 40-46, 1999

[VBJ00] Voisard, A., Medeiros, C. and Jomier, G.: Database Support for Cooperative Work

Documentation. In Proceedings of the 4th International Conference on the Design of

Cooperative Systems, Sophia-Antipolis, 2000

[WOR94] Worboys, M. F.: A Unified Model for Spatial and Temporal Information. The Computer

Journal, 37(1):25-34, 1994

